Decomposing the Yang-Mills field

被引:78
作者
Faddeev, L
Niemi, AJ
机构
[1] Russian Acad Sci, Steklov Math Inst, St Petersburg Branch, St Petersburg 196140, Russia
[2] Univ Uppsala, Dept Theoret Phys, S-75108 Uppsala, Sweden
[3] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland
[4] Mittag Leffler Inst, S-18262 Djursholm, Sweden
关键词
D O I
10.1016/S0370-2693(99)01035-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recently we have proposed a set of variables for describing the physical parameters of SU(N) Yang-Mills field. Were we derive an off-shell generalization of this Ansatz, For this we envoke the Darboux theorem to decompose arbitrary one-form with respect to a natural basis of one-forms. After a partial gauge fixing we identify these forms with the preimages of holomorphic and antiholomorphic forms on the coset space SU(N)/U(1)(N-1), now identified as a particular coadjoint orbit. This yields an off-shell gauge fixed decomposition of the Yang-Mills field that contains our original variables in a natural fashion. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:90 / 93
页数:4
相关论文
共 12 条
[1]  
BATTYE RA, HEPTH9811077
[2]  
CHO YM, HEPTH9906198
[3]   Partial duality in SU(N) Yang-Mills theory [J].
Faddeev, L ;
Niemi, AJ .
PHYSICS LETTERS B, 1999, 449 (3-4) :214-218
[4]   Stable knot-like structures in classical field theory [J].
Faddeev, L ;
Niemi, AJ .
NATURE, 1997, 387 (6628) :58-61
[5]   Partially dual variables in SU(2) Yang-Mills theory [J].
Faddeev, L ;
Niemi, AJ .
PHYSICAL REVIEW LETTERS, 1999, 82 (08) :1624-1627
[6]   FEYNMAN DIAGRAMS FOR YANG-MILLS FIELD [J].
FADDEEV, LD ;
POPOV, VN .
PHYSICS LETTERS B, 1967, B 25 (01) :29-&
[7]   STRING-LIKE TOPOLOGICAL EXCITATIONS OF ELECTROMAGNETIC-FIELD [J].
GLIOZZI, F .
NUCLEAR PHYSICS B, 1978, 141 (04) :379-390
[8]   Faddeev-Hopf knots: dynamics of linked un-knots [J].
Hietarinta, J ;
Salo, P .
PHYSICS LETTERS B, 1999, 451 (1-2) :60-67
[9]  
KASHAEV R, COMMUNICATION
[10]  
KONDO KI, HEPTH9906129