Bogomol'nyi decomposition for vesicles of arbitrary genus

被引:6
作者
Benoit, J [1 ]
Saxena, A
Lookman, T
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Univ Cergy Pontoise, Lab Phys Theor & Modelisat, CNRS, ESA 8089, F-95031 Cergy Pontoise, France
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 44期
关键词
D O I
10.1088/0305-4470/34/44/306
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We apply the Bogomol'nyi technique, which is usually invoked in the study of solitons or models with topological invariants, to the case of elastic energy of vesicles. We show that the spontaneous bending contribution caused by any deformation from metastable bending shapes falls into two distinct topological sets: shapes of spherical topology and shapes of non-spherical topology experience respectively a deviatoric bending contribution a la Fischer and a mean curvature bending contribution, la Helfrich. In other words, topology may be considered to describe bending phenomena. Besides, we calculate the bending energy per genus and the bending closure energy regardless of the shape of the vesicle. As an illustration we briefly consider geometrical frustration phenomena experienced by magnetically coated vesicles.
引用
收藏
页码:9417 / 9423
页数:7
相关论文
共 32 条
[1]  
BELAVIN AA, 1975, JETP LETT+, V22, P245
[2]   Heisenberg spins on an elastic torus section [J].
Benoit, J ;
Dandoloff, R .
PHYSICS LETTERS A, 1998, 248 (5-6) :439-444
[3]   Heisenberg spins on a cylinder section [J].
Benoit, J ;
Dandoloff, R ;
Saxena, A .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2000, 14 (19-20) :2093-2100
[4]  
Bishop R.L., 1964, GEOMETRY MANIFOLDS
[5]  
BOGOMOLNYI EB, 1976, SOV J NUCL PHYS+, V24, P449
[6]  
Brakke K., 1992, EXP MATH, V1, P141, DOI DOI 10.1080/10586458.1992.10504253
[7]   INVARIANT OF CONFORMAL MAPPINGS [J].
CHEN, BY .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 40 (02) :563-564
[8]   VIOLATION OF SELF-DUALITY FOR TOPOLOGICAL SOLITONS DUE TO SOLITON SOLITON INTERACTION ON A CYLINDRICAL GEOMETRY [J].
DANDOLOFF, R ;
VILLAINGUILLOT, S ;
SAXENA, A ;
BISHOP, AR .
PHYSICAL REVIEW LETTERS, 1995, 74 (05) :813-815
[9]  
FELSAGER B, 1987, GEOMETRY PARTICLES F
[10]  
FISCHER TM, 1992, J PHYS II, V2, P337, DOI 10.1051/jp2:1992137