A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells

被引:198
作者
Chen, Haining [1 ]
Wei, Zhanhua [1 ]
Zheng, Xiaoli [1 ]
Yang, Shihe [1 ]
机构
[1] Hong Kong Univ Sci & Technol, William Mong Inst Nano Sci & Technol, Dept Chem, Kowloon, Hong Kong, Peoples R China
关键词
Perovskite solar cells; Electrodeposition; PbI2; Large scale fabrication; Versatile process; HOLE-CONDUCTOR-FREE; THIN-FILMS; EFFICIENCY; TRANSFORMATION; EXTRACTION; INTERFACE; CUINSE2; LAYER;
D O I
10.1016/j.nanoen.2015.04.025
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hybrid organic/inorganic perovskite solar cells (PSCs) have emerged as a highly promising alternative renewable energy source because of their high efficiency and low-cost solution processable manufacturing technology. However, the commonly used spin coating process limits the large-scale manufacturing of perovskite layers for commercialization. Here we report on the development of an electrodeposition technique for fabricating perovskite layers and demonstrate its simplicity, versatility, scalability and roll-to-roll manufacturing compatibility. The key step is the electrodeposition of a PbO2 layer on TiO2 scaffold, which is then subjected to chemical bath conversion to sequentially generate PbI2 and CH3NH3PbI3 perovskite. Clearly demonstrated is the controllability of morphology and optical properties of the CH3NH3PbI3 layer, leading to a higher power conversion efficiency (PCE) reproducibility and a higher average PCE when incorporated into carbon-based PSCs than with the spin coating technique. Remarkably, the cell area of electrodeposited PSCs could be easily scaled up to 4 cm(2) with an excellent perovskite film uniformity, rendering a PCE gain of 36.3% over the spin-coated counterpart. We further demonstrate the deposition of perovskite layers on complex shape substrates (e.g., stainless steel net), which would be rather difficult or impossible with other competing film deposition techniques. These results establish electrodeposition as a versatile and controllable route toward low-cost and large scalable manufacturing of high efficiency PSCs. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:216 / 226
页数:11
相关论文
共 54 条
[1]   A High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell [J].
Ahmed, Shafaat ;
Reuter, Kathleen B. ;
Gunawan, Oki ;
Guo, Lian ;
Romankiw, Lubomyr T. ;
Deligianni, Hariklia .
ADVANCED ENERGY MATERIALS, 2012, 2 (02) :253-259
[2]  
Aksu S, 2012, 2012 38TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), P3092, DOI 10.1109/PVSC.2012.6318235
[3]  
[Anonymous], 23 EUR PHOT SOL EN C
[4]  
Basol B.M., 2011, P SOC PHOTO-OPT INS, V8110, P2011
[5]  
Basol B.M., 2009, P 34 IEEE PHOT SPEC
[6]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[7]   Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition [J].
Chen, Chang-Wen ;
Kang, Hao-Wei ;
Hsiao, Sheng-Yi ;
Yang, Po-Fan ;
Chiang, Kai-Ming ;
Lin, Hao-Wu .
ADVANCED MATERIALS, 2014, 26 (38) :6647-6652
[8]   Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process [J].
Chen, Qi ;
Zhou, Huanping ;
Hong, Ziruo ;
Luo, Song ;
Duan, Hsin-Sheng ;
Wang, Hsin-Hua ;
Liu, Yongsheng ;
Li, Gang ;
Yang, Yang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (02) :622-625
[9]   Tuning the Light Emission Properties by Band Gap Engineering in Hybrid Lead Halide Perovskite [J].
D'Innocenzo, Valerio ;
Kandada, Ajay Ram Srimath ;
De Bastiani, Michele ;
Gandini, Marina ;
Petrozza, Annamaria .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (51) :17730-17733
[10]   The Next Frontier: Electrodeposition for Solar Cell Fabrication [J].
Deligianni, Hariklia ;
Ahmed, Shafaat ;
Romankiw, Lubomyr T. .
ELECTROCHEMICAL SOCIETY INTERFACE, 2011, 20 (02) :47-53