Clathrin-mediated endocytosis is one of the major entry routes into a eukaryotic cell. It is driven by protein components that aid the selection of cargo and provide the mechanical force needed to both deform the plasma membrane and detach a vesicle. Clathrin-coated vesicles were first observed by electron microscopy in the early 1960s. In subsequent years, many of the characteristic intermediates generated during vesicle formation have been trapped and observed. A variety of electron microscopy techniques, from the analysis of sections through cells to the study of endocytic intermediates formed in vitro, have led to the proposition of a sequence of events and of roles for different proteins during vesicle formation. In this article, these techniques and the insights gained are reviewed, and their role in providing snap-shots of the stages of endocytosis in atomic detail is discussed.
机构:
Karolinska Inst, Dept Neurosci, Nobel Inst Neurophysiol, S-17177 Stockholm, SwedenKarolinska Inst, Dept Neurosci, Nobel Inst Neurophysiol, S-17177 Stockholm, Sweden
Brodin, L
;
Löw, P
论文数: 0引用数: 0
h-index: 0
机构:
Karolinska Inst, Dept Neurosci, Nobel Inst Neurophysiol, S-17177 Stockholm, SwedenKarolinska Inst, Dept Neurosci, Nobel Inst Neurophysiol, S-17177 Stockholm, Sweden
Löw, P
;
Shupliakov, O
论文数: 0引用数: 0
h-index: 0
机构:
Karolinska Inst, Dept Neurosci, Nobel Inst Neurophysiol, S-17177 Stockholm, SwedenKarolinska Inst, Dept Neurosci, Nobel Inst Neurophysiol, S-17177 Stockholm, Sweden
机构:
Karolinska Inst, Dept Neurosci, Nobel Inst Neurophysiol, S-17177 Stockholm, SwedenKarolinska Inst, Dept Neurosci, Nobel Inst Neurophysiol, S-17177 Stockholm, Sweden
Brodin, L
;
Löw, P
论文数: 0引用数: 0
h-index: 0
机构:
Karolinska Inst, Dept Neurosci, Nobel Inst Neurophysiol, S-17177 Stockholm, SwedenKarolinska Inst, Dept Neurosci, Nobel Inst Neurophysiol, S-17177 Stockholm, Sweden
Löw, P
;
Shupliakov, O
论文数: 0引用数: 0
h-index: 0
机构:
Karolinska Inst, Dept Neurosci, Nobel Inst Neurophysiol, S-17177 Stockholm, SwedenKarolinska Inst, Dept Neurosci, Nobel Inst Neurophysiol, S-17177 Stockholm, Sweden