Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization

被引:57
作者
Zhang, H. -S. [1 ]
Komvopoulos, K. [1 ]
机构
[1] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
关键词
D O I
10.1063/1.2949128
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp(3)) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study. (C) 2008 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 41 条
[1]   Fundamentals of pulsed plasmas for materials processing [J].
Anders, A .
SURFACE & COATINGS TECHNOLOGY, 2004, 183 (2-3) :301-311
[2]   Metal plasma immersion ion implantation and deposition: a review [J].
Anders, A .
SURFACE & COATINGS TECHNOLOGY, 1997, 93 (2-3) :158-167
[3]   Ion flux from vacuum arc cathode spots in the absence and presence of a magnetic field [J].
Anders, A ;
Yushkov, GY .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (08) :4824-4832
[4]   Imaging the separation of cathodic arc plasma and macroparticles in curved magnetic filters [J].
Anders, A .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2002, 30 (01) :108-109
[5]   Twist filter for the removal of macroparticles from cathodic arc plasmas [J].
Anders, A ;
MacGill, RA .
SURFACE & COATINGS TECHNOLOGY, 2000, 133 :96-100
[6]   A periodic table of ion charge-state distributions observed in the transition region between vacuum sparks and vacuum arcs [J].
Anders, A .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2001, 29 (02) :393-398
[7]   Approaches to rid cathodic arc plasmas of macro- and nanoparticles: a review [J].
Anders, A .
SURFACE & COATINGS TECHNOLOGY, 1999, 120 :319-330
[8]   EFFECT OF VACUUM ARE DEPOSITION PARAMETERS ON THE PROPERTIES OF AMORPHOUS-CARBON THIN-FILMS [J].
ANDERS, S ;
ANDERS, A ;
BROWN, IG ;
WEI, B ;
KOMVOPOULOS, K ;
AGER, JW ;
YU, KM .
SURFACE & COATINGS TECHNOLOGY, 1994, 68 :388-393
[9]   Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: recent developments [J].
Bhushan, B .
DIAMOND AND RELATED MATERIALS, 1999, 8 (11) :1985-2015
[10]   Ion energy distribution functions of vacuum arc plasmas [J].
Byon, E ;
Anders, A .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (04) :1899-1906