Nanoengineered Polypyrrole-Coated Fe2O3@C Multifunctional Composites with an Improved Cycle Stability as Lithium-Ion Anodes

被引:296
作者
Han, Fei [1 ]
Li, Duo [1 ]
Li, Wen-Cui [1 ]
Lei, Cheng [1 ]
Sun, Qiang [1 ]
Lu, An-Hui [1 ]
机构
[1] Dalian Univ Technol, Sch Chem Engn, State Key Lab Fine Chem, Fac Chem Environm & Biol Sci & Technol, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
polypyrrole coating; multifunctional composites; synergistic effects; cycle stability; lithium-ion anodes; ORDERED MESOPOROUS CARBON; HIGH PORE VOLUME; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; ALPHA-FE2O3; NANOSTRUCTURES; SUPERIOR-PERFORMANCE; OXIDE NANOPARTICLES; STORAGE CAPABILITY; ENERGY-STORAGE; HOLLOW SPHERES;
D O I
10.1002/adfm.201202254
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Novel multifunctional composites composed of highly dispersed nanosized Fe2O3 particles, a tubular mesoporous carbon host, and a conductive polypyrrole (PPy) sealing layer are hierarchically assembled via two facile processes, including bottom-up introduction of Fe2O3 nanoparticles in tubular mesoporous carbons, followed by in situ surface sealing with the PPy coating. Fe2O3 particles are well-dispersed within the carbon matrix and PPy is spatially and selectively coated onto the external surface and the pore entrances of the Fe2O3@C composite, thereby bridging the composite particles together into a larger unit. As an anode material for Li-ion batteries (LIBs), the PPy-coated Fe2O3@C composite exhibits stable cycle performance. Additionally, the PPy-coated Fe2O3@C composite also possesses fast electrode reaction kinetics, high Fe2O3 use efficiency, and large volumetric capacity. The excellent electrochemical performance is associated with a synergistic effect of the highly porous carbon matrix and the conducting PPy sealing layer. Such multifunctional configuration prevents the aggregation of NPs and maintains the structural integrity of active materials, in addition to effectively enhancing the electronic conductivity and warranting the stability of as-formed solid electrolyte interface (SEI) films. This nanoengineering strategy might open new avenues for the design of other multifunctional composite architectures as electrode materials in order to achieve high-performance LIBs.
引用
收藏
页码:1692 / 1700
页数:9
相关论文
共 59 条
[1]   Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity [J].
Balaya, P ;
Li, H ;
Kienle, L ;
Maier, J .
ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (08) :621-625
[2]   Nanostructured Fe3O4/SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode [J].
Ban, Chunmei ;
Wu, Zhuangchun ;
Gillaspie, Dane T. ;
Chen, Le ;
Yan, Yanfa ;
Blackburn, Jeffrey L. ;
Dillon, Anne C. .
ADVANCED MATERIALS, 2010, 22 (20) :E145-+
[3]   Ordered Mesoporous α-Fe2O3 (Hematite) Thin-Film Electrodes for Application in High Rate Rechargeable Lithium Batteries [J].
Brezesinski, Kirstin ;
Haetge, Jan ;
Wang, John ;
Mascotto, Simone ;
Reitz, Christian ;
Rein, Alexander ;
Tolbert, Sarah H. ;
Perlich, Jan ;
Dunn, Bruce ;
Brezesinski, Torsten .
SMALL, 2011, 7 (03) :407-414
[4]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[5]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[6]   Top-Down Fabrication of α-Fe2O3 Single-Crystal Nanodiscs and Microparticles with Tunable Porosity for Largely Improved Lithium Storage Properties [J].
Chen, Jun Song ;
Zhu, Ting ;
Yang, Xiao Hua ;
Yang, Hua Gui ;
Lou, Xiong Wen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (38) :13162-13164
[7]   Functional Materials for Rechargeable Batteries [J].
Cheng, Fangyi ;
Liang, Jing ;
Tao, Zhanliang ;
Chen, Jun .
ADVANCED MATERIALS, 2011, 23 (15) :1695-1715
[8]   Electrospun α-Fe2O3 nanorods as a stable, high capacity anode material for Li-ion batteries [J].
Cherian, Christie T. ;
Sundaramurthy, J. ;
Kalaivani, M. ;
Ragupathy, P. ;
Kumar, P. Suresh ;
Thavasi, V. ;
Reddy, M. V. ;
Sow, Chorng Haur ;
Mhaisalkar, S. G. ;
Ramakrishna, S. ;
Chowdari, B. V. R. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (24) :12198-12204
[9]   Orthorhombic Bipyramidal Sulfur Coated with Polypyrrole Nanolayers As a Cathode Material for Lithium-Sulfur Batteries [J].
Fu, Yongzhu ;
Manthiram, Arumugam .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (16) :8910-8915
[10]   Soft-Templated Mesoporous Carbon-Carbon Nanotube Composites for High Performance Lithium-ion Batteries [J].
Guo, Bingkun ;
Wang, Xiqing ;
Fulvio, Pasquale F. ;
Chi, Miaofang ;
Mahurin, Shannon M. ;
Sun, Xiao-Guang ;
Dai, Sheng .
ADVANCED MATERIALS, 2011, 23 (40) :4661-+