Evaluation of light detection and ranging (LIDAR) for measuring river corridor topography

被引:75
作者
Bowen, ZH [1 ]
Waltermire, RG [1 ]
机构
[1] US Geol Survey, Ft Collins, CO 80525 USA
来源
JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION | 2002年 / 38卷 / 01期
关键词
LIDAR - remote sensing; instream flow studies; aquatic ecosystems; watershed management; Geographic Information Systems; surveying;
D O I
10.1111/j.1752-1688.2002.tb01532.x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
LIDAR is relatively new in the commercial market for remote sensing of topography and it is difficult to find objective reporting on the accuracy of LIDAR measurements in an applied context. Accuracy specifications for LIDAR data in published evaluations range from 1 to 2 m root mean square error (RMSEx,y) and 15 to 20 cm RMSEz. Most of these estimates are based on measurements over relatively flat, homogeneous terrain. This study evaluated the accuracy of one LIDAR data set over a range of terrain types in a western river corridor. Elevation errors based on measurements over all terrain types were larger (RMSEz equals 43 cm) than values typically reported. This result is largely attributable to horizontal positioning limitations (1 to 2 m RMSEx,y) in areas with variable terrain and large topographic relief. Cross-sectional profiles indicated algorithms that were effective for removing vegetation in relatively flat terrain were less effective near the active channel where dense vegetation was found in a narrow band along a low terrace. LIDAR provides relatively accurate data at densities (50,000 to 100,000 points per km(2)) not feasible with other survey technologies. Other options for projects requiring higher accuracy include low-altitude aerial photography and intensive ground surveying.
引用
收藏
页码:33 / 41
页数:9
相关论文
共 15 条
[11]  
Krabill WB, 2000, PHOTOGRAMM ENG REM S, V66, P65
[12]  
LILLYCROP WJ, 1996, P 2 INT AIRB REM SEN, V1, P279
[13]  
LO NCH, 2000, FISHERY B, V98
[14]  
Measures R. M, 1991, LASER REMOTE SENSING
[15]   Satellite measurements of sea surface temperature through clouds [J].
Wentz, FJ ;
Gentemann, C ;
Smith, D ;
Chelton, D .
SCIENCE, 2000, 288 (5467) :847-850