Deconfinement phase transition in one-flavor QCD -: art. no. 034504.

被引:58
作者
Alexandrou, C [1 ]
Boriçi, A
Feo, A
de Forcrand, P
Galli, A
Jegerlehner, F
Takaishi, T
机构
[1] Univ Cyprus, Dept Nat Sci, CY-1678 Nicosia, Cyprus
[2] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[3] ETH Zentrum, Swiss Ctr Sci Comp, CH-8092 Zurich, Switzerland
[4] ELCA Informat, CH-8057 Zurich, Switzerland
[5] DESY IfH Zeuthen, D-15738 Zeuthen, Germany
[6] Hiroshima Univ Econ, Hiroshima 73101, Japan
关键词
D O I
10.1103/PhysRevD.60.034504
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a study of the deconfinement phase transition of one-flavor QCD using the multiboson algorithm. The mass of the Wilson fermions relevant for this study is moderately large and the non-Hermitian multiboson method is a superior simulation algorithm. Finite-size scaling is studied on lattices of size 8(3) X 4, 12(3) X 4, and 16(3) X 4. The behaviors of the peak of the Polyakov loop susceptibility, the deconfinement ratio, and the distribution of the norm of the Polyakov loop are all characteristic of a first-order phase transition for heavy quarks. As the quark mass decreases, the first-order transition gets weaker and turns into a crossover. To investigate finite-size scaling on larger spatial lattices we use an effective action in the same universality class as QCD. This effective action is constructed by replacing the fermionic determinant with the Polyakov loop identified as the most relevant Z(3)-symmetry-breaking term. Higher-order effects are incorporated in an effective Z(3)-breaking field h, which couples to the Polyakov loop. Finite-size scaling determines the value of h where the first-order transition ends. Our analysis at the end point h,, indicates that the effective model and thus QCD are consistent with the universality class of the three-dimensional Ising model. Matching the field strength at the end point h(ep) to the kappa values used in the dynamical quark simulations we estimate the end point kappa(ep) of the first-order phase transition. We find kappa(ep) similar to 0.08 which corresponds to a quark mass of about 1.4 GeV. [S0556-2821(99)05313-8].
引用
收藏
页数:13
相关论文
共 38 条
[1]   One-flavour QCD at finite temperature [J].
Alexandrou, C ;
Borici, A ;
Feo, A ;
de Forcrand, P ;
Galli, A ;
Jegerlehner, F ;
Takaishi, T .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 :406-408
[2]   Thermodynamics of 1-flavor QCD [J].
Alexandrou, C ;
Borici, A ;
Feo, A ;
deForcrand, P ;
Galli, A ;
Jegerlehner, F ;
Takaishi, T .
NUCLEAR PHYSICS B, 1997, :435-437
[3]   Finite-temperature phase structure of lattice QCD with Wilson quark action [J].
Aoki, S ;
Ukawa, A ;
Umemura, T .
PHYSICAL REVIEW LETTERS, 1996, 76 (06) :873-876
[4]  
Beinlich B, 1999, EUR PHYS J C, V6, P133
[5]   FINITE-SIZE SCALING AT 1ST-ORDER PHASE-TRANSITIONS [J].
BINDER, K ;
LANDAU, DP .
PHYSICAL REVIEW B, 1984, 30 (03) :1477-1485
[6]   SYSTEMATIC-ERRORS OF LUSCHERS FERMION METHOD AND ITS EXTENSIONS [J].
BORICI, A ;
DEFORCRAND, P .
NUCLEAR PHYSICS B, 1995, 454 (03) :645-660
[7]   Non-hermitian exact local bosonic algorithm for dynamical quarks [J].
Borrelli, A ;
deForcrand, P ;
Galli, A .
NUCLEAR PHYSICS B, 1996, 477 (03) :809-832
[8]   Thermodynamics of SU(3) lattice gauge theory [J].
Boyd, G ;
Engels, J ;
Karsch, F ;
Laermann, E ;
Legeland, C ;
Lutgemeier, M ;
Petersson, B .
NUCLEAR PHYSICS B, 1996, 469 (03) :419-444
[9]   EQUATION OF STATE FOR THE SU(3) GAUGE-THEORY [J].
BOYD, G ;
ENGELS, J ;
KARSCH, F ;
LAERMANN, E ;
LEGELAND, C ;
LUTGEMEIER, M ;
PETERSSON, B .
PHYSICAL REVIEW LETTERS, 1995, 75 (23) :4169-4172
[10]   HADRON MASSES FROM THE VALENCE APPROXIMATION TO LATTICE QCD [J].
BUTLER, F ;
CHEN, H ;
SEXTON, J ;
VACCARINO, A ;
WEINGARTEN, D .
NUCLEAR PHYSICS B, 1994, 430 (01) :179-228