Interactions involving the Rad51 paralogs Rad51C and XRCC3 in human cells

被引:97
作者
Wiese, C
Collins, DW
Albala, JS
Thompson, LH
Kronenberg, A
Schild, D
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Biol & Biotechnol Res Program, Berkeley, CA 94720 USA
关键词
D O I
10.1093/nar/30.4.1001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Homologous recombinational repair of DNA double-strand breaks and crosslinks in human cells is likely to require Rad51 and the five Rad51 paralogs (XRCC2, XRCC3, Rad51B/Rad51L1, Rad51C/Rad51L2 and Rad51D/Rad51L3), as has been shown in chicken and rodent cells. Previously, we reported on the interactions among these proteins using baculovirus and two- and three-hybrid yeast systems. To test for interactions involving XRCC3 and Rad51C, stable human cell lines have been isolated that express (His)(6)-tagged versions of XRCC3 or Rad51C. Ni2+-binding experiments demonstrate that XRCC3 and Rad51C interact in human cells. In addition, we find that Rad51C, but not XRCC3, interacts directly or indirectly with Rad51B, Rad51D and XRCC2. These results argue that there are at least two complexes of Rad51 paralogs in human cells (Rad51C-XRCC3 and Rad51B-Rad51C-Rad51D-XRCC2), both containing Rad51C. Moreover, Rad51 is not found in these complexes. X-ray treatment did not alter either the level of any Rad51 paralog or the observed interactions between paralogs. However, the endogenous level of Rad51C is moderately elevated in the XRCC3-overexpressing cell line, suggesting that dimerization between these proteins might help stabilize Rad51C.
引用
收藏
页码:1001 / 1008
页数:8
相关论文
共 46 条
[1]   Identification of a novel human RAD51 homolog, RAD51B [J].
Albala, JS ;
Thelen, MP ;
Prange, C ;
Fan, WF ;
Christensen, M ;
Thompson, LH ;
Lennon, GG .
GENOMICS, 1997, 46 (03) :476-479
[2]   Identification of a novel human RAD51 homolog, RAD51B (vol 46, pg 476, 1997) [J].
Albala, JS ;
Thelen, MP ;
Prange, C ;
Fan, WF ;
Christensen, M ;
Thompson, LH ;
Lennon, GG .
GENOMICS, 1998, 51 (03) :480-480
[3]   Inverse dose-rate effect for mutation induction by gamma-rays in human lymphoblasts [J].
Amundson, SA ;
Chen, DJ .
INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 1996, 69 (05) :555-563
[4]  
Bianco P. R., 1998, FRONT BIOSCI, V3, pD570, DOI DOI 10.2741/A304
[5]   The RAD51 family member, RAD51L3, is a DNA-stimulated ATPase that forms a complex with XRCC2 [J].
Braybrooke, JP ;
Spink, KG ;
Thacker, J ;
Hickson, ID .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (37) :29100-29106
[6]   XRCC3 is required for efficient repair of chromosome breaks by homologous recombination [J].
Brenneman, MA ;
Weiss, AE ;
Nickoloff, JA ;
Chen, DJ .
MUTATION RESEARCH-DNA REPAIR, 2000, 459 (02) :89-97
[7]   Isolation of novel human and mouse genes of the recA/RAD51 recombination-repair gene family [J].
Cartwright, R ;
Dunn, AM ;
Simpson, PJ ;
Tambini, CE ;
Thacker, J .
NUCLEIC ACIDS RESEARCH, 1998, 26 (07) :1653-1659
[8]   The XRCC2 DNA repair gene from human and mouse encodes a novel member of the recA/RAD51 family [J].
Cartwright, R ;
Tambini, CE ;
Simpson, PJ ;
Thacker, J .
NUCLEIC ACIDS RESEARCH, 1998, 26 (13) :3084-3089
[9]   Xrcc2 is required for genetic stability, embryonic neurogenesis and viability in mice [J].
Deans, B ;
Griffin, CS ;
Maconochie, M ;
Thacker, J .
EMBO JOURNAL, 2000, 19 (24) :6675-6685
[10]   Isolation and characterization of RAD51C, a new human member of the RAD51 family of related genes [J].
Dosanjh, MK ;
Collins, DW ;
Fan, WF ;
Lennon, GG ;
Albala, JS ;
Shen, ZY ;
Schild, D .
NUCLEIC ACIDS RESEARCH, 1998, 26 (05) :1179-1184