XRCC3 is required for efficient repair of chromosome breaks by homologous recombination

被引:150
作者
Brenneman, MA
Weiss, AE
Nickoloff, JA
Chen, DJ
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA
[2] Los Alamos Natl Lab, Div Life Sci, Los Alamos, NM USA
[3] Univ New Mexico, Sch Med, Dept Mol Genet & Microbiol, Albuquerque, NM 87131 USA
来源
MUTATION RESEARCH-DNA REPAIR | 2000年 / 459卷 / 02期
关键词
XRCC3; homologous recombination; DNA double-strand breaks; DNA repair; chromosome breaks; chromosomal stability;
D O I
10.1016/S0921-8777(00)00002-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
XRCC3 was originally identified as a human gene able to complement the DNA damage sensitivity, chromosomal instability and impaired growth of the mutant hamster cell line irs1SF. More recently, it has been cloned, sequenced and found to bear sequence homology to the highly conserved eukaryotic repair and recombination gene RAD51. The phenotype of irs1SF and the identification of XRCC3 as a member of the RAD51 gene family have suggested a role for XRCC3 in repair of DNA damage by homologous recombination. Homologous recombinational repair (HRR) of a specifically induced chromosomal double-strand break (DSB) was assayed in irs1SF cells with and without transient complementation by human XRCC3;I. Complementation with XRCC3 increased the frequencies of repair by 34- to 260-fold. The results confirm a role for XRCC3 in HRR of DNA DSB, and the importance of this repair pathway for the maintenance of chromosomal integrity in mammalian cells. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:89 / 97
页数:9
相关论文
共 39 条
[1]   Reduced X-ray resistance and homologous recombination frequencies in a RAD54(-/-) mutant of the chicken DT40 cell line [J].
Bezzubova, O ;
Silbergleit, A ;
YamaguchiIwai, Y ;
Takeda, S ;
Buerstedde, JM .
CELL, 1997, 89 (02) :185-193
[2]   Xrcc3 is required for assembly of Rad51 complexes in vivo [J].
Bishop, DK ;
Ear, U ;
Bhattacharyya, A ;
Calderone, C ;
Beckett, M ;
Weichselbaum, RR ;
Shinohara, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (34) :21482-21488
[3]   Absence of DNA ligase IV protein in XR-1 cells: evidence for stabilization by XRCC4 [J].
Bryans, M ;
Valenzano, MC ;
Stamato, TD .
MUTATION RESEARCH-DNA REPAIR, 1999, 433 (01) :53-58
[4]   CROSS-SENSITIVITY OF GAMMA-RAY-SENSITIVE HAMSTER MUTANTS TO CROSS-LINKING AGENTS [J].
CALDECOTT, K ;
JEGGO, P .
MUTATION RESEARCH, 1991, 255 (02) :111-121
[5]   The XRCC2 DNA repair gene from human and mouse encodes a novel member of the recA/RAD51 family [J].
Cartwright, R ;
Tambini, CE ;
Simpson, PJ ;
Thacker, J .
NUCLEIC ACIDS RESEARCH, 1998, 26 (13) :3084-3089
[6]   MUTANT RODENT CELL-LINES SENSITIVE TO ULTRAVIOLET-LIGHT, IONIZING-RADIATION AND CROSS-LINKING AGENTS - A COMPREHENSIVE SURVEY OF GENETIC AND BIOCHEMICAL CHARACTERISTICS [J].
COLLINS, AR .
MUTATION RESEARCH, 1993, 293 (02) :99-118
[7]  
COX MM, 1999, PROG NUCL ACID RES M, V63, P310
[8]   The XRCC2 and XRCC3 repair genes are required for chromosome stability in mammalian cells [J].
Cui, X ;
Brenneman, M ;
Meyne, J ;
Oshimura, M ;
Goodwin, EH ;
Chen, DJ .
MUTATION RESEARCH-DNA REPAIR, 1999, 434 (02) :75-88
[9]   Disruption of mouse RAD54 reduces ionizing radiation resistance [J].
Essers, J ;
Hendriks, RW ;
Swagemakers, SMA ;
Troelstra, C ;
deWit, J ;
Bootsma, D ;
Hoeijmakers, JHJ ;
Kanaar, R .
CELL, 1997, 89 (02) :195-204
[10]  
FRIEDBERG EC, 1995, DNA REPAIR MUTAGENES