Microfluidic technologies for accelerating the clinical translation of nanoparticles

被引:548
作者
Valencia, Pedro M. [1 ]
Farokhzad, Omid C. [2 ,3 ,4 ]
Karnik, Rohit [5 ]
Langer, Robert [1 ,4 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] Harvard Univ, Sch Med, Brigham & Womens Hosp, Lab Nanomed & Biomat, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Brigham & Womens Hosp, Dept Anaesthesiol, Boston, MA 02115 USA
[4] MIT, MIT Harvard Ctr Canc Nanotechnol Excellence, Cambridge, MA 02139 USA
[5] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
TARGETED NANOPARTICLES; CANCER-THERAPY; PLATFORM; MICROREACTORS; NANOMEDICINE; DESIGN; SYSTEM; SCALE; CHIP;
D O I
10.1038/nnano.2012.168
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Using nanoparticles for therapy and imaging holds tremendous promise for the treatment of major diseases such as cancer. However, their translation into the clinic has been slow because it remains difficult to produce nanoparticles that are consistent 'batch-to-batch', and in sufficient quantities for clinical research. Moreover, platforms for rapid screening of nanoparticles are still lacking. Recent microfluidic technologies can tackle some of these issues, and offer a way to accelerate the clinical translation of nanoparticles. In this Progress Article, we highlight the advances in microfluidic systems that can synthesize libraries of nanoparticles in a well-controlled, reproducible and high-throughput manner. We also discuss the use of microfluidics for rapidly evaluating nanoparticles in vitro under microenvironments that mimic the in vivo conditions. Furthermore, we highlight some systems that can manipulate small organisms, which could be used for evaluating the in vivo toxicity of nanoparticles or for drug screening. We conclude with a critical assessment of the near- and long-term impact of microfluidics in the field of nanomedicine.
引用
收藏
页码:623 / 629
页数:7
相关论文
共 50 条
[1]   Screening: the age of fishes [J].
Baker, Monya .
NATURE METHODS, 2011, 8 (01) :47-51
[2]   Nanomaterials: Applications in Cancer Imaging and Therapy [J].
Barreto, Jose A. ;
O'Malley, William ;
Kubeil, Manja ;
Graham, Bim ;
Stephan, Holger ;
Spiccia, Leone .
ADVANCED MATERIALS, 2011, 23 (12) :H18-H40
[3]   A mechanism for transition-metal nanoparticle self-assembly [J].
Besson, C ;
Finney, EE ;
Finke, RG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (22) :8179-8184
[4]   Rapid liposome quality assessment using a lab-on-a-chip [J].
Birnbaumer, Gerald ;
Kuepcue, Seta ;
Jungreuthmayer, Christian ;
Richter, Lukas ;
Vorauer-Uhl, Karola ;
Wagner, Andreas ;
Valenta, Claudia ;
Sleytr, Uwe ;
Ertl, Peter .
LAB ON A CHIP, 2011, 11 (16) :2753-2762
[5]   Micromixing Within Microfluidic Devices [J].
Capretto, Lorenzo ;
Cheng, Wei ;
Hill, Martyn ;
Zhang, Xunli .
MICROFLUIDICS: TECHNOLOGIES AND APPLICATIONS, 2011, 304 :27-68
[6]   Rapid Discovery of Potent siRNA-Containing Lipid Nanoparticles Enabled by Controlled Microfluidic Formulation [J].
Chen, Delai ;
Love, Kevin T. ;
Chen, Yi ;
Eltoukhy, Ahmed A. ;
Kastrup, Christian ;
Sahay, Gaurav ;
Jeon, Alvin ;
Dong, Yizhou ;
Whitehead, Kathryn A. ;
Anderson, Daniel G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (16) :6948-6951
[7]   Coarse-Grained Simulations of Rapid Assembly Kinetics for Polystyrene-b-poly(ethylene oxide) Copolymers in Aqueous Solutions [J].
Chen, Ting ;
Hynninen, Antti-Pekka ;
Prud'homme, Robert K. ;
Kevrekidis, Ioannis G. ;
Panagiotopoulos, Athanassios Z. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (51) :16357-16366
[8]  
Cho EC, 2011, NAT NANOTECHNOL, V6, P385, DOI [10.1038/NNANO.2011.58, 10.1038/nnano.2011.58]
[9]   Strategies for the intracellular delivery of nanoparticles [J].
Chou, Leo Y. T. ;
Ming, Kevin ;
Chan, Warren C. W. .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (01) :233-245
[10]   Microfluidics-enabled phenotyping, imaging, and screening of multicellular organisms [J].
Crane, Matthew M. ;
Chung, Kwanghun ;
Stirman, Jeffrey ;
Lu, Hang .
LAB ON A CHIP, 2010, 10 (12) :1509-1517