Uniaxial-process-induced strained-Si: Extending the CMOS roadmap

被引:476
作者
Thompson, SE [1 ]
Sun, GY [1 ]
Choi, YS [1 ]
Nishida, T [1 ]
机构
[1] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
CMOS; enhanced mobility; strained-silicon;
D O I
10.1109/TED.2006.872088
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reviews the history of strained-silicon and the adoption of uniaxial-process-induced strain in nearly all high-performance 90-, 65-, and 45-mn logic technologies to date. A more complete data set of n- and p-channel MOSFET piezoresistance and strain-altered gate tunneling is presented along with new insight into the physical mechanisms responsible for hole mobility enhancement. Strained-Si hole mobility data are analyzed using six band k center dot p calculations for stresses of technological importance: uniaxial longitudinal compressive and biaxial stress on (001) and (110) wafers. The calculations and experimental data show that low in-plane and large out-of-plane conductivity effective masses and a high density of states in the top band are all important for large hole mobility enhancement. This work suggests longitudinal compressive stress on (001) or (110) wafers and (110) channel direction offers the most favorable band structure for holes. The maximum Si inversion-layer hole mobility enhancement is estimated to be similar to 4 times higher for uniaxial stress on (100) wafer and similar to 2 times higher for biaxial stress on (100) wafer and for uniaxial stress on a (110) wafer.
引用
收藏
页码:1010 / 1020
页数:11
相关论文
共 59 条
[1]  
ALBAYATI A, 2004, SEMICONDUCTOR FABTEC, P84
[2]  
[Anonymous], IEDM
[3]  
[Anonymous], IEDM
[4]   A reliable and manufacturable method to induce a stress of >1 GPa on a p-channel MOSFET in high volume manufacturing [J].
Arghavani, R ;
Xia, L ;
M'Saad, H ;
Balseanu, M ;
Karunasiri, G ;
Mascarenhas, A ;
Thompson, SE .
IEEE ELECTRON DEVICE LETTERS, 2006, 27 (02) :114-116
[5]   A 65nm logic technology featuring 35nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD and 0.57 μm2 SRAM cell [J].
Bai, P ;
Auth, C ;
Balakrishnan, S ;
Bost, M ;
Brain, R ;
Chikarmane, V ;
Heussner, R ;
Hussein, M ;
Hwang, J ;
Ingerly, D ;
James, R ;
Jeong, J ;
Kenyon, C ;
Lee, E ;
Lee, SH ;
Lindert, N ;
Liu, M ;
Ma, Z ;
Marieb, T ;
Murthy, A ;
Nagisetty, R ;
Natarajan, S ;
Neirynck, J ;
Ott, A ;
Parker, C ;
Sebastian, J ;
Shaheed, R ;
Sivakurnar, S ;
Steigerwald, J ;
Tyagi, S ;
Weber, C ;
Woolery, B ;
Yeoh, A ;
Zhang, K ;
Bohr, M .
IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2004, TECHNICAL DIGEST, 2004, :657-660
[6]  
Cea SM, 2004, IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2004, TECHNICAL DIGEST, P963
[7]   Network security - Overview [J].
Chandrashekhar, U ;
Richman, SH ;
Thanawala, RC .
BELL LABS TECHNICAL JOURNAL, 2004, 8 (04) :1-5
[8]   SPIN-ORBIT-COUPLING EFFECTS ON THE VALENCE-BAND STRUCTURE OF STRAINED SEMICONDUCTOR QUANTUM-WELLS [J].
CHAO, CYP ;
CHUANG, SL .
PHYSICAL REVIEW B, 1992, 46 (07) :4110-4122
[9]  
Chen CH, 2004, 2004 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, P56
[10]  
Chidambaram PR, 2004, 2004 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, P48