One-Pot Assembly of a Hetero-dimeric DNA Origami from Chip-Derived Staples and Double-Stranded Scaffold

被引:31
作者
Marchi, Alexandria N. [1 ]
Saaem, Ishtiaq [1 ,2 ]
Tian, Jingdong [1 ,2 ]
LaBean, Thomas H. [1 ,3 ,4 ,5 ]
机构
[1] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
[2] Duke Univ, Inst Genome Sci & Policy, Durham, NC 27708 USA
[3] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA
[4] Duke Univ, Dept Chem, Durham, NC 27708 USA
[5] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27606 USA
基金
美国国家科学基金会;
关键词
structural DNA nanotechnology; molecular self-assembly; DNA origami; chip-synthesized oligonucleotides; synthetic biology; gene-synthesis; inkjet; GENE SYNTHESIS; FOLDING DNA; SHAPES; NANOSTRUCTURES; NANOTECHNOLOGY; AMPLIFICATION; MICROARRAY; FORMAMIDE;
D O I
10.1021/nn302322j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Although structural DNA nanotechnology, and especially scaffolded DNA origami, hold great promise for bottom-up fabrication of novel nanoscale materials and devices, concerns about scalability have tempered widespread enthusiasm. Here we report a single-pot reaction where both strands of double-stranded M13-bacteriophage DNA are simultaneously folded into two distinct shapes that then heterodimerize with high yield. The fully addressable, two-dimensional heterodimer DNA origami, with twice the surface area of standard M13 origami, formed in high yield (81% of the well-formed monomers undergo dimerization). We also report the concurrent production of entire sets of staple strands by a unique, nicking strand-displacement amplification (nSDA) involving reusable surface-bound template strands that were synthesized in situ using a custom piezoelectric inkjet system. The combination of chip-based staple strand production, double-sized origami, and high-yield one-pot assembly markedly increases the useful scale of DNA origami.
引用
收藏
页码:903 / 910
页数:8
相关论文
共 38 条
[1]   DNA origami design of dolphin-shaped structures with flexible tails [J].
Andersen, Ebbe S. ;
Dong, Mingdong ;
Nielsen, Morten M. ;
Jahn, Kasper ;
Lind-Thomsen, Allan ;
Mamdouh, Wael ;
Gothelf, Kurt V. ;
Besenbacher, Flemming ;
Kjems, Jorgen .
ACS NANO, 2008, 2 (06) :1213-1218
[2]   Thermodynamic effects of formamide on DNA stability [J].
Blake, RD ;
Delcourt, SG .
NUCLEIC ACIDS RESEARCH, 1996, 24 (11) :2095-2103
[3]   High-quality gene assembly directly from unpurified mixtures of microarray-synthesized oligonucleotides [J].
Borovkov, Alex Y. ;
Loskutov, Andrey V. ;
Robida, Mark D. ;
Day, Kristen M. ;
Cano, Jose A. ;
Le Olson, Tien ;
Patel, Hetal ;
Brown, Kevin ;
Hunter, Preston D. ;
Sykes, Kathryn F. .
NUCLEIC ACIDS RESEARCH, 2010, 38 (19) :e180
[4]   The changing economics of DNA synthesis [J].
Carlson, Robert .
NATURE BIOTECHNOLOGY, 2009, 27 (12) :1091-1094
[5]  
Castro CE, 2011, NAT METHODS, V8, P221, DOI [10.1038/nmeth.1570, 10.1038/NMETH.1570]
[6]   Self-assembly of DNA into nanoscale three-dimensional shapes [J].
Douglas, Shawn M. ;
Dietz, Hendrik ;
Liedl, Tim ;
Hoegberg, Bjoern ;
Graf, Franziska ;
Shih, William M. .
NATURE, 2009, 459 (7245) :414-418
[7]   A proximity-based programmable DNA nanoscale assembly line [J].
Gu, Hongzhou ;
Chao, Jie ;
Xiao, Shou-Jun ;
Seeman, Nadrian C. .
NATURE, 2010, 465 (7295) :202-U86
[8]   Folding DNA Origami from a Double-Stranded Source of Scaffold [J].
Hogberg, Bjorn ;
Liedl, Tim ;
Shih, William M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (26) :9154-+
[9]   Linear nicking endonuclease-mediated strand-displacement DNA amplification [J].
Joneja, Aric ;
Huang, Xiaohua .
ANALYTICAL BIOCHEMISTRY, 2011, 414 (01) :58-69
[10]   Isothermal assembly of DNA origami structures using denaturing agents [J].
Jungmann, Ralf ;
Liedl, Tim ;
Sobey, Thomas L. ;
Shih, William ;
Simmel, Friedrich C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (31) :10062-+