Biologically inspired oxidation catalysis

被引:1200
作者
Que, Lawrence, Jr. [1 ,2 ]
Tolman, William B. [1 ,2 ]
机构
[1] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Ctr Met Biocatalysis, Minneapolis, MN 55455 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1038/nature07371
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The development of processes for selective hydrocarbon oxidation is a goal that has long been pursued. An additional challenge is to make such processes environmentally friendly, for example by using nontoxic reagents and energy- efficient catalytic methods. Excellent examples are naturally occurring iron- or copper- containing metalloenzymes, and extensive studies have revealed the key chemical principles that underlie their efficacy as catalysts for aerobic oxidations. Important inroads have been made in applying this knowledge to the development of synthetic catalysts that model enzyme function. Such biologically inspired hydrocarbon oxidation catalysts hold great promise for wide- ranging synthetic applications.
引用
收藏
页码:333 / 340
页数:8
相关论文
共 103 条
[1]   Reaction mechanisms of mononuclear non-heme iron oxygenases [J].
Abu-Omar, MM ;
Loaiza, A ;
Hontzeas, N .
CHEMICAL REVIEWS, 2005, 105 (06) :2227-2252
[2]  
ANDERSSON KK, 1991, NEW J CHEM, V15, P411
[3]   An efficient biomimetic Fe-catalyzed epoxidation of olefins using hydrogen peroxide [J].
Anilkumar, Gopinathan ;
Bitterlich, Bianca ;
Gelalcha, Feyissa Gadissa ;
Tse, Man Kin ;
Beller, Matthias .
CHEMICAL COMMUNICATIONS, 2007, (03) :289-291
[4]  
[Anonymous], COORD CHEM REV
[5]   Catalysis research of relevance to carbon management: Progress, challenges, and opportunities [J].
Arakawa, H ;
Aresta, M ;
Armor, JN ;
Barteau, MA ;
Beckman, EJ ;
Bell, AT ;
Bercaw, JE ;
Creutz, C ;
Dinjus, E ;
Dixon, DA ;
Domen, K ;
DuBois, DL ;
Eckert, J ;
Fujita, E ;
Gibson, DH ;
Goddard, WA ;
Goodman, DW ;
Keller, J ;
Kubas, GJ ;
Kung, HH ;
Lyons, JE ;
Manzer, LE ;
Marks, TJ ;
Morokuma, K ;
Nicholas, KM ;
Periana, R ;
Que, L ;
Rostrup-Nielson, J ;
Sachtler, WMH ;
Schmidt, LD ;
Sen, A ;
Somorjai, GA ;
Stair, PC ;
Stults, BR ;
Tumas, W .
CHEMICAL REVIEWS, 2001, 101 (04) :953-996
[6]   Green oxidation of alcohols using biomimetic Cu complexes and Cu enzymes as catalysts [J].
Arends, IWCE ;
Gamez, P ;
Sheldon, RA .
ADVANCES IN INORGANIC CHEMISTRY INCLUDING BIOINORGANIC STUDIES, VOL 58: HOMOGENEOUS BIOMIMETIC OXIDATION CATALYSIS, 2006, 58 :235-279
[7]   Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase [J].
Balasubramanian, Ramakrishnan ;
Rosenzweig, Amy C. .
ACCOUNTS OF CHEMICAL RESEARCH, 2007, 40 (07) :573-580
[8]   Biomimetic oxidations by dinuclear and trinuclear copper complexes [J].
Battaini, G ;
Granata, A ;
Monzani, E ;
Gullotti, M ;
Casella, L .
ADVANCES IN INORGANIC CHEMISTRY INCLUDING BIOINORGANIC STUDIES, VOL 58: HOMOGENEOUS BIOMIMETIC OXIDATION CATALYSIS, 2006, 58 :185-233
[9]   Reactions of the peroxo intermediate of soluble methane monooxygenase hydroxylase with ethers [J].
Beauvais, LG ;
Lippard, SJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (20) :7370-7378
[10]   Copper-containing amine oxidases. Biogenesis and catalysis; a structural perspective [J].
Brazeau, BJ ;
Johnson, BJ ;
Wilmot, CM .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2004, 428 (01) :22-31