Proper metaphase spindle length is determined by centromere proteins Mis12 and Mis6 required for faithful chromosome segregation

被引:180
作者
Goshima, G
Saitoh, S
Yanagida, M [1 ]
机构
[1] Kyoto Univ, Grad Sch Sci, Core Res Evolut Sci & Technol Res Project, Dept Biophys,Sakyo Ku, Kyoto 6068502, Japan
[2] Kyoto Univ, Grad Sch Biostudies, Dept Gene Mech, Sakyo Ku, Kyoto 6068502, Japan
关键词
cell cycle control; checkpoint; fission yeast; kinetochore; chromosome segregation; sister chromatid cohesion;
D O I
10.1101/gad.13.13.1664
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
High-fidelity chromosome transmission is fundamental in controlling the quality of the cell division cycle. The spindle pole-to-pole distance remains constant from metaphase to anaphase A. We show that fission yeast sister centromere-connecting proteins, Mis6 and Mis12 are required for correct spindle morphogenesis, determining metaphase spindle length, Thirty-five to sixty percent extension of metaphase spindle length takes place in mis6 and mis12 mutants. This may be due to incorrect spindle morphogenesis containing impaired sister centromeres or force unbalance between pulling by the linked sister kinetochores and kinetochore-independent pushing. The mutant spindle fully extends in anaphase, although it is accompanied by drastic missegregation by aberrant sister centromere separation. Hence, metaphase spindle length may be crucial for segregation fidelity. Suppressors of mis12 partly restore normal metaphase spindle length. In mis4 that is defective in sister chromatid cohesion, metaphase spindle length is also long, but anaphase spindle extension is blocked, probably due to the activated spindle checkpoint, Extensive missegregation is caused in mis12 only when Mis12 is inactivated from the previous M through to the following M, an effective way to avoid missegregation in the cell cycle. Misle has conserved homologs in budding yeast and filamentous fungi.
引用
收藏
页码:1664 / 1677
页数:14
相关论文
共 68 条
[2]   Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores [J].
Chen, RH ;
Waters, JC ;
Salmon, ED ;
Murray, AW .
SCIENCE, 1996, 274 (5285) :242-246
[3]   COMPOSITE MOTIFS AND REPEAT SYMMETRY IN S-POMBE CENTROMERES - DIRECT ANALYSIS BY INTEGRATION OF NOTL RESTRICTION SITES [J].
CHIKASHIGE, Y ;
KINOSHITA, N ;
NAKASEKO, Y ;
MATSUMOTO, T ;
MURAKAMI, S ;
NIWA, O ;
YANAGIDA, M .
CELL, 1989, 57 (05) :739-751
[4]   TELOMERE-LED PREMEIOTIC CHROMOSOME MOVEMENT IN FISSION YEAST [J].
CHIKASHIGE, Y ;
DING, DQ ;
FUNABIKI, H ;
HARAGUCHI, T ;
MASHIKO, S ;
YANAGIDA, M ;
HIRAOKA, Y .
SCIENCE, 1994, 264 (5156) :270-273
[5]   An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast [J].
Ciosk, R ;
Zachariae, W ;
Michaelis, C ;
Shevchenko, A ;
Mann, M ;
Nasmyth, K .
CELL, 1998, 93 (06) :1067-1076
[6]   Centromeres: proteins, protein complexes, and repeated domains at centromeres of simple eukaryotes [J].
Clarke, L .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1998, 8 (02) :212-218
[7]   Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p [J].
CohenFix, O ;
Peters, JM ;
Kirschner, MW ;
Koshland, D .
GENES & DEVELOPMENT, 1996, 10 (24) :3081-3093
[8]   Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression [J].
Connelly, C ;
Hieter, P .
CELL, 1996, 86 (02) :275-285
[9]   FISSION YEAST ENTERS THE STATIONARY PHASE G0 STATE FROM EITHER MITOTIC G1 OR G2 [J].
COSTELLO, G ;
RODGERS, L ;
BEACH, D .
CURRENT GENETICS, 1986, 11 (02) :119-125
[10]   Something from nothing: The evolution and utility of satellite repeats [J].
Csink, AK ;
Henikoff, S .
TRENDS IN GENETICS, 1998, 14 (05) :200-204