Arrestins play an important role in regulating desensitization and trafficking of G protein-coupled receptors (GPCRs). However, limited insight into the specificity of arrestin-mediated regulation of GPCRs is currently avail able. Recently, we used an antisense strategy to reduce arrestin levels in HEK293 cells and characterize the role of arrestins on endogenous G(s)-coupled receptors (Mundell, S. J., Loudon, R. B., and Benovic, J. L. (1999) Biochemistry 38, 8723-8732). Here, we characterized GPCRs coupled to either G(q) (M-1 muscarinic acetylcholine receptor (M(1)AchR) and P2y(1) and P2y(2) purinergic receptors) or G(i) (somatostatin and AT1 angiotensin receptors) in wild type and arrestin antisense HEK293 cells. The agonist-specific desensitization of the M(1)Ach and somatostatin receptors was significantly attenuated in antisense-expressing cells, whereas desensitization of P2y(1) and P2y(2) purinergic and AT1 angiotensin receptors was unaffected by reduced arrestin levels. To further examine arrestin/ GPCR specificity, we studied the effects of endogenous GPCR activation on the redistribution of arrestin-a epitope tagged with the green fluorescent protein (arrestin-2-GFP). These studies revealed a receptor-specific movement of arrestin-2-GFP that mirrored the arrestin-receptor specificity observed in the antisense cells. Thus, agonist-induced activation of endogenous beta(2)-adrenergic, prostaglandin E-2, M(1)Ach, and somatostatin receptors induced arrestin-2-GFP redistribution to early endosomes, whereas P2y(1) and P2y(2) purinergic and AT1 angiotensin receptor activation did not. Thus, endogenous arrestins mediate the regulation of selective G(q)- and G(i)-coupled receptors in HEK293 cells.