Nernst effect in metals and superconductors: a review of concepts and experiments

被引:174
作者
Behnia, Kamran [1 ]
Aubin, Herve [1 ]
机构
[1] Univ Paris 06, Lab Phys & Etud Mat, Ctr Natl Rech Sci, Ecole Super Phys & Chim Ind, F-75005 Paris, France
关键词
outline; thermoelectricity; superconductivity; correlated electrons; Boltzmann transport; Landau quantization; FLUCTUATION-INDUCED DIAMAGNETISM; 2-DIMENSIONAL ELECTRON-GAS; STRIPE ORDER; T-C; IRREVERSIBLE-PROCESSES; QUANTUM OSCILLATIONS; TRANSPORT-PROPERTIES; RECIPROCAL RELATIONS; INVERSION LAYER; CRITICAL-FIELD;
D O I
10.1088/0034-4885/79/4/046502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Nernst effect is the transverse electric field produced by a longitudinal thermal gradient in the presence of a magnetic field. At the beginning of this century, Nernst experiments on cuprates were analyzed assuming that: (i) the contribution of quasi-particles to the Nernst signal is negligible; and (ii) Gaussian superconducting fluctuations cannot produce a Nernst signal well above the critical temperature. Both these assumptions were contradicted by subsequent experiments. This paper reviews experiments documenting multiple sources of a Nernst signal, which, according to the Bridgman relation, measures the flow of transverse entropy caused by a longitudinal particle flow. Along the lines of Landauer's approach to transport phenomena, the magnitude of the transverse magneto-thermoelectric response is linked to the quantum of thermoelectric conductance and a number of material-dependent length scales: the mean free path, the Fermi wavelength, the de Broglie thermal wavelength and the superconducting coherence length. Extremely mobile quasi-particles in dilute metals generate a widely-documented Nernst signal. Fluctuating Cooper pairs in the normal state of superconductors have been found to produce a detectable Nernst signal with an amplitude conforming to the Gaussian theory, first conceived by Ussishkin, Sondhi and Huse. In addition to these microscopic sources, mobile Abrikosov vortices, mesoscopic objects simultaneously carrying entropy and magnetic flux, can produce a sizeable Nernst response. Finally, in metals subject to a magnetic field strong enough to truncate the Fermi surface to a few Landau tubes, each exiting tube generates a peak in the Nernst response. The survey of these well-established sources of the Nernst signal is a helpful guide to identify the origin of the Nernst signal in other controversial cases.
引用
收藏
页数:23
相关论文
共 127 条
[1]   Large, non-saturating magnetoresistance in WTe2 [J].
Ali, Mazhar N. ;
Xiong, Jun ;
Flynn, Steven ;
Tao, Jing ;
Gibson, Quinn D. ;
Schoop, Leslie M. ;
Liang, Tian ;
Haldolaarachchige, Neel ;
Hirschberger, Max ;
Ong, N. P. ;
Cava, R. J. .
NATURE, 2014, 514 (7521) :205-+
[2]   DYNAMICS OF SUPERFLUID FILMS [J].
AMBEGAOKAR, V ;
HALPERIN, BI ;
NELSON, DR ;
SIGGIA, ED .
PHYSICAL REVIEW B, 1980, 21 (05) :1806-1826
[3]  
[Anonymous], 1990, Metal-Insulator Transitions
[4]   Unified Picture for the Colossal Thermopower Compound FeSb2 [J].
Battiato, M. ;
Tomczak, J. M. ;
Zhong, Z. ;
Held, K. .
PHYSICAL REVIEW LETTERS, 2015, 114 (23)
[5]  
Behnia K, 2015, FUNDAMENTALS OF THERMOELECTRICITY, P1, DOI 10.1093/acprof:oso/9780199697663.001.0001
[6]   On the thermoelectricity of correlated electrons in the zero-temperature limit [J].
Behnia, K ;
Jaccard, D ;
Flouquet, J .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (28) :5187-5198
[7]   Oscillating Nernst-Ettingshausen effect in bismuth across the quantum limit [J].
Behnia, Kamran ;
Measson, Marie-Aude ;
Kopelevich, Yakov .
PHYSICAL REVIEW LETTERS, 2007, 98 (16)
[8]   Signatures of electron fractionalization in ultraquantum bismuth [J].
Behnia, Kamran ;
Balicas, Luis ;
Kopelevich, Yakov .
SCIENCE, 2007, 317 (5845) :1729-1731
[9]   On mobility of electrons in a shallow Fermi sea over a rough seafloor [J].
Behnia, Kamran .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (37)
[10]   Nernst effect in semimetals:: The effective mass and the figure of merit [J].
Behnia, Kamran ;
Measson, Marie-Aude ;
Kopelevich, Yakov .
PHYSICAL REVIEW LETTERS, 2007, 98 (07)