LQG propagator: III. The new vertex

被引:33
作者
Alesci, Emanuele [1 ,2 ,3 ,4 ,5 ,6 ]
Bianchi, Eugenio [2 ,3 ,4 ,5 ,6 ]
Rovelli, Carlo [2 ,3 ,4 ,5 ,6 ]
机构
[1] Ecole Normale Super Lyon, Phys Lab, CNRS, UMR 5672, F-69364 Lyon, France
[2] Univ Mediterranee, Ctr Phys Theor Luminy, UMR 6207, CNRS, F-13288 Marseille, France
[3] Univ Mediterranee, Ctr Phys Theor Luminy, Univ Prov Aix Marseille 1, F-13288 Marseille, France
[4] Univ Mediterranee, Ctr Phys Theor Luminy, Univ Prov Mediterranee Aix Marseille 2, F-13288 Marseille, France
[5] Univ Mediterranee, Ctr Phys Theor Luminy, Univ Prov Sud Toulon Var, F-13288 Marseille, France
[6] Univ Mediterranee, Ctr Phys Theor Luminy, Lab Affilie FRUMAM FR 2291, F-13288 Marseille, France
关键词
FIELD-THEORY; QUANTUM; MODEL; ASYMPTOTICS;
D O I
10.1088/0264-9381/26/21/215001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the first article of this series, we pointed out a difficulty in the attempt to derive the low-energy behavior of the graviton two-point function, from the loop-quantum-gravity dynamics defined by the Barrett-Crane vertex amplitude. Here we show that this difficulty disappears when using the corrected vertex amplitude recently introduced in the literature. In particular, we show that the asymptotic analysis of the new vertex amplitude recently performed by Barrett, Fairbairn and others, implies that the vertex has precisely the asymptotic structure that, in the second article of this series, was indicated as the key necessary condition for overcoming the difficulty.
引用
收藏
页数:8
相关论文
共 60 条
[1]  
ALESCI E, 2008, ARXIV08081971
[2]  
ALESCI E, 2008, ARXIV08093718
[3]   Tensorial structure of the LQG graviton propagator [J].
Alesci, Emanuele .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (08) :1209-1213
[4]   Complete LQG propagator: Difficulties with the barrett-crane vertex [J].
Alesci, Emanuele ;
Rovelli, Carlo .
PHYSICAL REVIEW D, 2007, 76 (10)
[5]   Complete LQG propagator. II. Asymptotic behavior of the vertex [J].
Alesci, Emanuele ;
Rovelli, Carlo .
PHYSICAL REVIEW D, 2008, 77 (04)
[6]  
[Anonymous], ARXIV09021170GRQC
[7]   Quantum theory of geometry: III. Non-commutativity of Riemannian structures [J].
Ashtekar, A ;
Corichi, A ;
Zapata, JA .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (10) :2955-2972
[8]   Background independent quantum giravity: a status report [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) :R53-R152
[9]   WEAVING A CLASSICAL METRIC WITH QUANTUM THREADS [J].
ASHTEKAR, A ;
ROVELLI, C ;
SMOLIN, L .
PHYSICAL REVIEW LETTERS, 1992, 69 (02) :237-240
[10]  
Baez J. C., 1999, Adv. Theor. Math. Phys, V3, P815