Daily irradiance and feedback inhibition of photosynthesis at elevated carbon dioxide concentration in Brassica oleracea

被引:10
作者
Bunce, JA [1 ]
Sicher, RC [1 ]
机构
[1] USDA ARS, Beltsville Agr Res Ctr, ACSL, Beltsville, MD 20705 USA
关键词
collard; irradiance; kohlrabi; saccharides; stomatal conductance; variety differences;
D O I
10.1023/B:PHOT.0000027511.44995.66
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The fundamental cause of down-regulation of photosynthesis at elevated carbon dioxide concentration (EC) is thought to be a slower rate of utilization of saccharides than their stimulated rate of production, but there are few studies directly supporting this idea under field conditions. We hypothesized that within Brassica oleracea, down-regulation would not occur in kohlrabi because it has a large sink for saccharides in an enlarged stem, but would occur in collards, which lack this sink. Field tests were consistent with this hypothesis. In collards, the degree of down-regulation of photosynthesis in plants grown at EC varied depending on the daily integral of photosynthetically active radiation (PAR) of the day prior to the measurement of photosynthetic capacity, as did leaf saccharide content. However, EC did not result in lower leaf contents of chlorophyll, soluble protein, ribulose-1,5-bisphosphate carboxylase, or nitrate in collards, nor was there any evidence of a triose phosphate utilization rate limiting photosynthesis. Experiments in controlled environment chambers confirmed that there was a threshold response for the down-regulation of photosynthesis in collards at EC to the PAR of the previous day, with down-regulation only occurring above a minimum daily integral of PAR. Down-regulation of photosynthesis could be induced in plants grown at ambient carbon dioxide by a single night at low temperature or by a single day with high PAR and EC. In the controlled environment study, the degree of down-regulation of photosynthesis was highly correlated with leaf glucose, fructose, and sucrose contents, and less well correlated with starch content. Hence down-regulation of photosynthesis at EC in collards in the field represented feedback inhibition from the accumulation of soluble saccharides and day-to-day variation in its occurrence was predictable from the weather.
引用
收藏
页码:481 / 488
页数:8
相关论文
共 36 条
[31]   Photosynthesis, light and nitrogen relationships in a, young deciduous forest canopy under open-air CO2 enrichment [J].
Takeuchi, Y ;
Kubiske, ME ;
Isebrands, JG ;
Pregtizer, KS ;
Hendrey, G ;
Karnosky, DF .
PLANT CELL AND ENVIRONMENT, 2001, 24 (12) :1257-1268
[32]   DETERMINATION OF NITRATE AND NITRITE BY HIGH-PRESSURE LIQUID-CHROMATOGRAPHY - COMPARISON WITH OTHER METHODS FOR NITRATE DETERMINATION [J].
THAYER, JR ;
HUFFAKER, RC .
ANALYTICAL BIOCHEMISTRY, 1980, 102 (01) :110-119
[33]   Atmospheric CO2 enrichment increases growth and photosynthesis of Pinus taeda: a 4 year experiment in the field [J].
Tissue, DT ;
Thomas, RB ;
Strain, BR .
PLANT CELL AND ENVIRONMENT, 1997, 20 (09) :1123-1134
[34]  
VANOOSTEN JJ, 1995, PLANT CELL ENVIRON, V18, P1253, DOI 10.1111/j.1365-3040.1995.tb00185.x
[35]   Evidence for the occurrence of feedback inhibition of photosynthesis in rice [J].
Winder, TL ;
Sun, JD ;
Okita, TW ;
Edwards, GE .
PLANT AND CELL PHYSIOLOGY, 1998, 39 (08) :813-820
[36]  
Ziska LH, 1995, PHYSIOL PLANTARUM, V95, P355, DOI 10.1111/j.1399-3054.1995.tb00849.x