Poisson geometry of sigma models with extended supersymmetry

被引:37
作者
Lyakhovich, SL
Zabzine, M
机构
[1] Tomsk State Univ, Dept Theoret Phys, Tomsk 634050, Russia
[2] Ist Nazl Fis Nucl, Sezione Firenze, Dipartimento Fis, I-50019 Sesto, Italy
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1016/S0370-2693(02)02851-4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider a general N = (2,2) non-linear sigma model with a torsion. We show that the consistency of N = (2, 2) supersymmetry implies that the target manifold is necessary equipped with two (in general, different) Poisson structures. Finally we argue that the Poisson geometry of the target space is a characteristic feature of the sigma models with extended supersymmetry. (C) 2002 Elsevier Science B.V All rights reserved.
引用
收藏
页码:243 / 251
页数:9
相关论文
共 28 条
[11]   2D (4,4)1 hypermultiplets (I): Diversity for N=4 models [J].
Gates, SJ ;
Ketov, SV .
PHYSICS LETTERS B, 1998, 418 (1-2) :111-118
[12]   HYPERKAHLER METRICS AND SUPERSYMMETRY [J].
HITCHIN, NJ ;
KARLHEDE, A ;
LINDSTROM, U ;
ROCEK, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (04) :535-589
[13]   2-DIMENSIONAL GRAVITY AND NONLINEAR GAUGE-THEORY [J].
IKEDA, N .
ANNALS OF PHYSICS, 1994, 235 (02) :435-464
[14]   COMPLEX STRUCTURES, DUALITY AND WZW-MODELS IN EXTENDED SUPERSPACE [J].
IVANOV, IT ;
KIM, B ;
ROCEK, M .
PHYSICS LETTERS B, 1995, 343 (1-4) :133-143
[15]  
KONTSEVICH M, QALG9709040
[16]  
LINDSTROM U, HEPTH0209098
[17]   SIMPLE-MODEL OF INTEGRABLE HAMILTONIAN EQUATION [J].
MAGRI, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (05) :1156-1162
[18]   OFF-SHELL WZW MODELS IN EXTENDED SUPERSPACE [J].
ROCEK, M ;
SCHOUTENS, K ;
SEVRIN, A .
PHYSICS LETTERS B, 1991, 265 (3-4) :303-306
[19]  
ROCEK M, 1991, P MIRR SYMM WORKSH M
[20]   POISSON STRUCTURE INDUCED (TOPOLOGICAL) FIELD-THEORIES [J].
SCHALLER, P ;
STROBL, T .
MODERN PHYSICS LETTERS A, 1994, 9 (33) :3129-3136