Scale and twist effects on the strength of nanostructured yarns and reinforced composites

被引:35
作者
Beyerlein, I. J. [1 ]
Porwal, P. K. [2 ]
Zhu, Y. T. [3 ]
Hu, K. [4 ]
Xu, X. F. [4 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Indian Inst Technol, Dept Civil Engn, Bombay 400076, Maharashtra, India
[3] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA
[4] Stevens Inst Technol, Dept Civil Environm & Ocean Engn, Hoboken, NJ 07030 USA
关键词
CARBON-NANOTUBE FIBERS; STATISTICAL STRENGTH; TENSILE FAILURE; BUNDLES;
D O I
10.1088/0957-4484/20/48/485702
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work we investigate the effects of yarn diameter and gauge length on the statistical strength of yarns spun from carbon nanotubes (CNTs). Tensile tests are conducted on a large sample set of nanostructured CNT yarns. The data show that strength varies substantially and both strength and statistical dispersion in strength decreases as yarn diameter increases. To explain these phenomena and forecast their effects on larger-scale structures, a hierarchical set of Monte Carlo simulation models is developed: the lower-scale model aims to predict the relationship between yarn nanostructure and tensile strength and the higher-scale model aims to relate the strength of CNT yarns to the strength of composites reinforced with unidirectionally aligned CNT yarns. Predictions indicate that, for both structures, the mean and statistical variation in strength will decrease as the surface twist angle, number of CNTs in cross section and gauge length of the yarn increases. The predicted reductions in variability due to yarn nanostructure will be important for determining ways to minimize the detrimental effects of increasing length scale on strength.
引用
收藏
页数:10
相关论文
共 30 条
[11]   Characteristic tensile strength and Weibull shape parameter of carbon nanotubes [J].
Klein, Claude A. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (12)
[12]  
Naik NK, 2001, J COMPOS TECH RES, V23, P225, DOI 10.1520/CTR10556J
[13]   Investigation on the strength-size relationship in fibrous structures including composites [J].
Pan, N ;
Chen, HC ;
Thompson, J ;
Inglesby, MK ;
Zeronian, SH .
JOURNAL OF MATERIALS SCIENCE, 1998, 33 (10) :2667-2672
[14]   PREDICTION OF STATISTICAL STRENGTHS OF TWISTED FIBER STRUCTURES [J].
PAN, N .
JOURNAL OF MATERIALS SCIENCE, 1993, 28 (22) :6107-6114
[15]  
Phoenix S.L., 2000, COMPREHENSIVE COMPOS, V1, P559, DOI DOI 10.1016/B0-08-042993-9/00056-5
[16]   STATISTICAL-THEORY FOR THE STRENGTH OF TWISTED FIBER BUNDLES WITH APPLICATIONS TO YARNS AND CABLES [J].
PHOENIX, SL .
TEXTILE RESEARCH JOURNAL, 1979, 49 (07) :407-423
[17]   Size effects in the distribution for strength of brittle matrix fibrous composites [J].
Phoenix, SL ;
Ibnabdeljalil, M ;
Hui, CY .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1997, 34 (05) :545-568
[18]   STATISTICAL STRENGTH OF A TWISTED FIBER BUNDLE: AN EXTENSION OF DANIELS EQUAL-LOAD-SHARING PARALLEL BUNDLE THEORY [J].
Porwal, Pankaj K. ;
Beyerlein, Irene J. ;
Phoenix, S. Leigh .
JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2006, 1 (08) :1425-1447
[19]   Statistical strength of twisted fiber bundles with load sharing controlled by frictional length scales [J].
Porwal, Pankaj K. ;
Beyerlein, Irene J. ;
Phoenix, Stuart Leigh .
JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2007, 2 (04) :773-791
[20]   Multiscale stochastic simulations for tensile testing of nanotube-based macroscopic cables [J].
Pugno, Nicola M. ;
Bosia, Federico ;
Carpinteri, Alberto .
SMALL, 2008, 4 (08) :1044-1052