Ultrafast Charge Photogeneration Dynamics in Ground-State Charge-Transfer Complexes Based on Conjugated Polymers

被引:54
作者
Bakulin, Artem A. [1 ]
Martyanov, Dmitry S. [2 ,3 ]
Paraschuk, Dmitry Yu. [2 ,3 ]
Pshenichnikov, Maxim S. [1 ]
van Loosdrecht, Paul H. M. [1 ]
机构
[1] Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands
[2] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia
[3] Moscow MV Lomonosov State Univ, Ctr Int Laser, Moscow 119991, Russia
关键词
D O I
10.1021/jp8048839
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The charge photogeneration and early recombination in MEH-PPV-based charge-transfer complexes (CTCs) and in MEH-PPV/PCBM blend as a reference are studied by ultrafast visible-pump-IR-probe spectroscopy. After excitation of the CTC band, an immediate (< 100 fs) electron transfer is observed from the polymer chain to the acceptor with the same yield as in the MEH-PPV/PCBM blend. The forward charge transfer in the CTCs is followed by an efficient (similar to 95%) and fast (<30 ps) geminate recombination. For comparison, the recombination efficiency obtained in the MEH-PPV/PCBM blend does not exceed a mere 50%. Polarizationsensitive experiments demonstrate high (similar to 0.3) values of transient anisotropy for the CTCs polaron band. In contrast, in the MEH-PPV/PCBM blend the dipole moment orientation of the charge-induced transition is less correlated with the polarization of the excitation photon. According to these data, photogeneration and recombination of charges in the CTCs take place locally (i.e., within a single pair of a polymer conjugation segment and an acceptor) while in tire MEH-PPV/PCBM blend exciton migration precedes the separation of charges. Results of the ultrafast experiments are supported by photocurrent measurements on the corresponding MEH-PPV/acceptor photodiodes.
引用
收藏
页码:13730 / 13737
页数:8
相关论文
共 58 条
  • [21] GOULD IR, 1993, CHEM PHYS, P176
  • [22] Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C-60 heterojunction photovoltaic cell
    Halls, JJM
    Pichler, K
    Friend, RH
    Moratti, SC
    Holmes, AB
    [J]. APPLIED PHYSICS LETTERS, 1996, 68 (22) : 3120 - 3122
  • [23] Morphology of polymer/fullerene bulk heterojunction solar cells
    Hoppe, H
    Sariciftci, NS
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2006, 16 (01) : 45 - 61
  • [24] Modeling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction organic solar cells
    Hoppe, H
    Arnold, N
    Sariciftci, NS
    Meissner, D
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2003, 80 (01) : 105 - 113
  • [25] Ultrafast electron transfer and decay dynamics in a small band gap bulk heterojunction material
    Hwang, In-Wook
    Soci, Cesare
    Moses, Daniel
    Zhu, Zhengguo
    Waller, David
    Gaudiana, Russell
    Brabec, Christoph J.
    Heeger, Alan J.
    [J]. ADVANCED MATERIALS, 2007, 19 (17) : 2307 - +
  • [26] Efficient tandem polymer solar cells fabricated by all-solution processing
    Kim, Jin Young
    Lee, Kwanghee
    Coates, Nelson E.
    Moses, Daniel
    Nguyen, Thuc-Quyen
    Dante, Mark
    Heeger, Alan J.
    [J]. SCIENCE, 2007, 317 (5835) : 222 - 225
  • [27] A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells
    Kim, Y
    Cook, S
    Tuladhar, SM
    Choulis, SA
    Nelson, J
    Durrant, JR
    Bradley, DDC
    Giles, M
    Mcculloch, I
    Ha, CS
    Ree, M
    [J]. NATURE MATERIALS, 2006, 5 (03) : 197 - 203
  • [28] KOSTER LJA, 2007, DEVICE PHYS DONOR AC
  • [29] Charge transfer excitons in bulk heterojunctions of a polyfluorene copolymer and a fullerene derivative
    Loi, Maria Antonietta
    Toffanin, Stefano
    Muccini, Michele
    Forster, Michael
    Scherf, Ulrich
    Scharber, Markus
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (13) : 2111 - 2116
  • [30] ENERGETICS OF MOLECULAR COMPLEXES
    MCGLYNN, SP
    [J]. CHEMICAL REVIEWS, 1958, 58 (06) : 1113 - 1156