Nonsmooth analysis, convex analysis, and their applications to motion planning

被引:4
作者
Choset, H [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
关键词
nonsmooth analysis; convex analysis; motion planning; roadmaps; Voronoi diagrams;
D O I
10.1142/S0218195999000261
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Nonsmooth analysis of a broad class of functions taking the form F(x) = min(i) f(i)(x), where each f(i) is a convex function. One element of this class of functions is the distance function, which measures the distance between a point and the nearest point on the nearest obstacle. Many motion planning algorithms are based on the distance function, and thus rigorous analysis of the distance function can provide a better understanding of how to implement traditional motion planning algorithms. Finally, this paper enumerates some useful results in convex analysis.
引用
收藏
页码:447 / 469
页数:23
相关论文
共 13 条
  • [1] [Anonymous], 1997, HDB DISCRETE COMPUTA
  • [2] Canny J.F., 1988, Complexity of Robot Motion Planning
  • [3] AN OPPORTUNISTIC GLOBAL PATH PLANNER
    CANNY, JF
    LIN, MC
    [J]. ALGORITHMICA, 1993, 10 (2-4) : 102 - 120
  • [4] CHOSET H, 1995, P IEEE INT C ROB AUT
  • [5] Clarke F.H., 1990, OPTIMIZATION NONSMOO
  • [6] GOLDMAN AJ, 1956, POLYHEDRAL CONVEX CO
  • [7] Keller HB, 1987, LECT NUMERICAL METHO
  • [9] Latombe J.-C., 2012, ROBOT MOTION PLANNIN, V124
  • [10] Murray R., 1993, A Mathematical Introduction to Robotic Manipulation