Microparticle-mediated transfection of non-phagocytic cells in vitro

被引:55
作者
Walter, E [1 ]
Merkle, HP [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Appl Biosci, CH-8057 Zurich, Switzerland
关键词
cationic microparticles; DNA; gene transfer; macrophages; toxicity;
D O I
10.1080/10611860290007478
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
DNA-loaded microparticles represent an attractive delivery system to target professional antigen presenting cells (APC) for the delivery of DNA vaccines. Microparticles exhibiting a positively charged surface were prepared by the incorporation of two selected cationic polymers into a poly(D, L-lactide-co-glycolide) polymer (PLGA) core. The toxicity of the different formulations was checked in two cell lines and was found to be comparable to plain PLGA particles. Increased toxicity of some formulations was observed in primary macrophages (MPhi) with high phagocytosis activity. Plasmid DNA was efficiently adsorbed to the microparticle surfaces, and the different formulations were checked for their transfection efficiency in phagocytic and non-phagocytic cells. Interestingly, the most pronounced gene transfer efficiency was observed in a non-phagocytic 293 cell line when compared to a macrophage cell line and primary MPhi. Possible mechanisms include the dissociation of DNA-polymer complex and subsequent transfection of the cells. Microscopic observation of fluorescent-labeled DNA in primary MPhi revealed large amounts of DNA entering the cells, but no detectable DNA inside the nuclei. We conclude that phagocytic professional APC represent a group of cells, which is especially difficult to transfect when compared to other cell types. The administration of DNA in vivo is likely to predominantly result in the transfection of non-lymphoid cells unless there is a possibility to provide efficient targeting and trafficking of the DNA to the nucleus of professional APC. Although DNA-loaded PEI and DAEM microparticles resulted in significant transfection of cells, toxicity and transfection efficiency was not superior to that of DNA complexed with soluble PEI and DAEM.
引用
收藏
页码:11 / 21
页数:11
相关论文
共 29 条
[1]   Mechanisms of phagocytosis in macrophages [J].
Aderem, A ;
Underhill, DM .
ANNUAL REVIEW OF IMMUNOLOGY, 1999, 17 :593-623
[2]   PLGA microspheres containing plasmid DNA: Preservation of supercoiled DNA via cryopreparation and carbohydrate stabilization [J].
Ando, S ;
Putnam, D ;
Pack, DW ;
Langer, R .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1999, 88 (01) :126-130
[3]   Immunobiology of dendritic cells [J].
Banchereau, J ;
Briere, F ;
Caux, C ;
Davoust, J ;
Lebecque, S ;
Liu, YT ;
Pulendran, B ;
Palucka, K .
ANNUAL REVIEW OF IMMUNOLOGY, 2000, 18 :767-+
[4]  
BARMAN S, 2000, P INT S CONTROL REL, V27, P866
[5]   A VERSATILE VECTOR FOR GENE AND OLIGONUCLEOTIDE TRANSFER INTO CELLS IN CULTURE AND IN-VIVO - POLYETHYLENIMINE [J].
BOUSSIF, O ;
LEZOUALCH, F ;
ZANTA, MA ;
MERGNY, MD ;
SCHERMAN, D ;
DEMENEIX, B ;
BEHR, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7297-7301
[6]   Preparation and characterization of poly (D,L-lactide-co-glycolide) microspheres for controlled release of poly(L-lysine) complexed plasmid DNA [J].
Capan, Y ;
Woo, BH ;
Gebrekidan, S ;
Ahmed, S ;
DeLuca, PP .
PHARMACEUTICAL RESEARCH, 1999, 16 (04) :509-513
[7]  
Corr M, 1999, J IMMUNOL, V163, P4721
[8]   Plasmid DNA adsorbed onto cationic microparticles mediates target gene expression and antigen presentation by dendritic cells [J].
Denis-Mize, KS ;
Dupuis, M ;
MacKichan, ML ;
Singh, M ;
Doe, B ;
O'Hagan, D ;
Ulmer, JB ;
Donnelly, JJ ;
McDonald, DM ;
Ott, G .
GENE THERAPY, 2000, 7 (24) :2105-2112
[9]   Efficient gene delivery into human dendritic cells by adenovirus polyethylenimine and mannose polyethylenimine transfection [J].
Diebold, SS ;
Lehrmann, H ;
Kursa, M ;
Wagner, E ;
Cotten, M ;
Zenke, M .
HUMAN GENE THERAPY, 1999, 10 (05) :775-786
[10]   Induction of cytotoxic T lymphocytes by intramuscular immunization with plasmid DNA is facilitated by bone marrow-derived cells [J].
Doe, B ;
Selby, M ;
Barnett, S ;
Baenziger, J ;
Walker, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (16) :8578-8583