The Mitochondrial Thioredoxin System

被引:116
作者
Miranda-Vizuete, Antonio [1 ]
Damdimopoulos, Anastasios E. [1 ]
Spyrou, Giannis [1 ]
机构
[1] Karolinska Inst, Ctr Biotechnol, Dept Biosci, Novum, S-14157 Huddinge, Sweden
基金
英国医学研究理事会;
关键词
D O I
10.1089/ars.2000.2.4-801
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Eukaryotic organisms from yeast to human possess a mitochondrial thioredoxin system composed of and thioredoxin reductase, similar to the cytosolic thioredoxin system that exists in the same cells. Yeast and mammalian mitochondrial thioredoxins are monomers of approximately 12 kDa and contain the typical conserved active site WCGPC. However, there are important differences between yeast and mammalian mitochondrial thioredoxin reductases that resemble the differences between their cytosolic counterparts. Mammalian mitochondrial thioredoxin reductase is a selenoprotein that forms a homodimer of 55 kDa/subunit; while yeast mitochondrial thioredoxin reductase is a homodimer of 37 kDa/subunit and does not contain selenocysteine. A function of the mitochondrial thioredoxin system is as electron donor for a mitochondrial peroxiredoxin, an enzyme that detoxifies the hydrogen peroxide generated by the mitochondrial metabolism. Experiments with yeast mutants lacking both the mitochondrial thioredoxin system as well as the mitochondrial peroxiredoxin system suggest an important role for mitochondrial thioredoxin, thioredoxin reductase, and peroxiredoxin in the protection against oxidative stress. Antiox. Redox Signal. 2, 801-810.
引用
收藏
页码:801 / U195
页数:11
相关论文
共 86 条
[11]   Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites [J].
Costantini, P ;
Chernyak, BV ;
Petronilli, V ;
Bernardi, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (12) :6746-6751
[12]   The mitochondrial permeability transition pore and its role in cell death [J].
Crompton, M .
BIOCHEMICAL JOURNAL, 1999, 341 :233-249
[13]   Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae [J].
Davidson, JF ;
Whyte, B ;
Bissinger, PH ;
Schiestl, RH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (10) :5116-5121
[14]   MUTATIONS THAT ALLOW DISULFIDE BOND FORMATION IN THE CYTOPLASM OF ESCHERICHIA-COLI [J].
DERMAN, AI ;
PRINZ, WA ;
BELIN, D ;
BECKWITH, J .
SCIENCE, 1993, 262 (5140) :1744-1747
[15]   The DNA sequence of human chromosome 22 [J].
Dunham, I ;
Shimizu, N ;
Roe, BA ;
Chissoe, S ;
Dunham, I ;
Hunt, AR ;
Collins, JE ;
Bruskiewich, R ;
Beare, DM ;
Clamp, M ;
Smink, LJ ;
Ainscough, R ;
Almeida, JP ;
Babbage, A ;
Bagguley, C ;
Balley, J ;
Barlow, K ;
Bates, KN ;
Beasley, O ;
Bird, CP ;
Blakey, S ;
Bridgeman, AM ;
Buck, D ;
Burgess, J ;
Burrill, WD ;
Burton, J ;
Carder, C ;
Carter, NP ;
Chen, Y ;
Clark, G ;
Clegg, SM ;
Cobley, V ;
Cole, CG ;
Collier, RE ;
Connor, RE ;
Conroy, D ;
Corby, N ;
Coville, GJ ;
Cox, AV ;
Davis, J ;
Dawson, E ;
Dhami, PD ;
Dockree, C ;
Dodsworth, SJ ;
Durbin, RM ;
Ellington, A ;
Evans, KL ;
Fey, JM ;
Fleming, K ;
French, L .
NATURE, 1999, 402 (6761) :489-495
[16]   REDUCTION OF METHIONINE SULFOXIDE TO METHIONINE BY ESCHERICHIA-COLI [J].
EJIRI, SI ;
WEISSBACH, H ;
BROT, N .
JOURNAL OF BACTERIOLOGY, 1979, 139 (01) :161-164
[17]  
FALSON P, 1986, J BIOL CHEM, V261, P7151
[19]  
GAN ZR, 1991, J BIOL CHEM, V266, P1692
[20]  
GARROW TA, 1993, J BIOL CHEM, V268, P11910