Automatic classification of protein crystallization images using a curve-tracking algorithm

被引:45
作者
Bern, M
Goldberg, D
Stevens, RC
Kuhn, P
机构
[1] Scripps Res Inst, Joint Ctr Struct Gen, La Jolla, CA 92037 USA
[2] Palo Alto Res Ctr, Scripps PARC Inst Adv Biomed Sci, Palo Alto, CA 94070 USA
[3] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
[4] Scripps Res Inst, Scripps PARC Inst Adv Biomed Sci, La Jolla, CA 92037 USA
来源
JOURNAL OF APPLIED CRYSTALLOGRAPHY | 2004年 / 37卷
关键词
D O I
10.1107/S0021889804001761
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An algorithm for automatic classification of protein crystallization images acquired from a high-throughput vapor-diffusion system is described. The classifier uses edge detection followed by dynamic-programming curve tracking to determine the drop boundary; this technique optimizes a scoring function that incorporates roundness, smoothness and gradient intensity. The classifier focuses on the most promising region in the drop and computes a number of statistical features, including some derived from the Hough transform and from curve tracking. The five classes of images are 'Empty', 'Clear', 'Precipitate', 'Microcrystal Hit' and 'Crystal'. On test data, the classifier gives about 12% false negatives ( true crystals called 'Empty', 'Clear' or 'Precipitate') and about 14% false positives ( true clears or precipitates called 'Crystal' or 'Microcrystal Hit').
引用
收藏
页码:279 / 287
页数:9
相关论文
共 18 条
[2]   Automatic classification of sub-microlitre protein-crystallization trials in 1536-well plates [J].
Cumbaa, CA ;
Lauricella, A ;
Fehrman, N ;
Veatch, C ;
Collins, R ;
Luft, J ;
DeTitta, G ;
Jurisica, I .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2003, 59 :1619-1627
[3]   A decision-theoretic generalization of on-line learning and an application to boosting [J].
Freund, Y ;
Schapire, RE .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1997, 55 (01) :119-139
[4]  
Gonzalez RC, 1987, Digital Image Processing, V2nd
[5]   Comparison of edge detectors - A methodology and initial study [J].
Heath, M ;
Sarkar, S ;
Sanocki, T ;
Bowyer, K .
COMPUTER VISION AND IMAGE UNDERSTANDING, 1998, 69 (01) :38-54
[6]   Intelligent decision support for protein crystal growth [J].
Jurisica, I ;
Rogers, P ;
Glasgow, JI ;
Fortier, S ;
Luft, JR ;
Wolfley, JR ;
Bianca, MA ;
Weeks, DR ;
DeTitta, GT .
IBM SYSTEMS JOURNAL, 2001, 40 (02) :394-409
[7]   Data mining crystallization databases: Knowledge-based approaches to optimize protein crystal screens [J].
Kimber, MS ;
Vallee, F ;
Houston, S ;
Necakov, A ;
Skarina, T ;
Evdokimova, E ;
Beasley, S ;
Christendat, D ;
Savchenko, A ;
Arrowsmith, CH ;
Vedadi, M ;
Gerstein, M ;
Edwards, AM .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 2003, 51 (04) :562-568
[8]   OPTIMAL DETECTION OF CURVES IN NOISY PICTURES [J].
MONTANARI, U .
COMMUNICATIONS OF THE ACM, 1971, 14 (05) :335-+
[9]   Shotgun crystallization strategy for structural genomics:: an optimized two-tiered crystallization screen against the Thermotoga maritima proteome [J].
Page, R ;
Grzechnik, SK ;
Canaves, JM ;
Spraggon, G ;
Kreusch, A ;
Kuhn, P ;
Stevens, RC ;
Lesley, SA .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2003, 59 :1028-1037
[10]  
QUINLAN R, 2003, C5 0 DATA MINING TOO