Automatic classification of sub-microlitre protein-crystallization trials in 1536-well plates

被引:49
作者
Cumbaa, CA
Lauricella, A
Fehrman, N
Veatch, C
Collins, R
Luft, J
DeTitta, G
Jurisica, I
机构
[1] Ontario Canc Inst, Toronto, ON M5G 2M9, Canada
[2] Hauptman Woodward Med Res Inst, Buffalo, NY 14203 USA
来源
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY | 2003年 / 59卷
关键词
D O I
10.1107/S0907444903015130
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A technique for automatically evaluating microbatch (400 nl) protein-crystallization trials is described. This method addresses analysis problems introduced at the sub-microlitre scale, including non-uniform lighting and irregular droplet boundaries. The droplet is segmented from the well using a loopy probabilistic graphical model with a two-layered grid topology. A vector of 23 features is extracted from the droplet image using the Radon transform for straight-edge features and a bank of correlation filters for microcrystalline features. Image classification is achieved by linear discriminant analysis of its feature vector. The results of the automatic method are compared with those of a human expert on 32 1536-well plates. Using the human-labeled images as ground truth, this method classifies images with 85% accuracy and a ROC score of 0.84. This result compares well with the experimental repeatability rate, assessed at 87%. Images falsely classified as crystal-positive variously contain speckled precipitate resembling microcrystals, skin effects or genuine crystals falsely labeled by the human expert. Many images falsely classified as crystal-negative variously contain very fine crystal features or dendrites lacking straight edges. Characterization of these misclassifications suggests directions for improving the method.
引用
收藏
页码:1619 / 1627
页数:9
相关论文
共 11 条
[1]  
Adams J. A., 2002, JALA, V7, P36, DOI 10.1016/S1535-5535(04)00224-2
[2]   The prospects of protein nanocrystallography [J].
Bodenstaff, ER ;
Hoedemaeker, FJ ;
Kuil, ME ;
de Vrind, HPM ;
Abrahams, JP .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2002, 58 :1901-1906
[3]   1536-well assay plates: when do they make sense? [J].
Garyantes, TK .
DRUG DISCOVERY TODAY, 2002, 7 (09) :489-490
[4]   Improving objectivity and scalability in protein crystallization [J].
Jurisica, I ;
Rogers, P ;
Glasgow, JI ;
Collins, RJ ;
Wolfley, JR ;
Luft, JR ;
DeTitta, GT .
IEEE INTELLIGENT SYSTEMS, 2001, 16 (06) :26-34
[5]   Intelligent decision support for protein crystal growth [J].
Jurisica, I ;
Rogers, P ;
Glasgow, JI ;
Fortier, S ;
Luft, JR ;
Wolfley, JR ;
Bianca, MA ;
Weeks, DR ;
DeTitta, GT .
IBM SYSTEMS JOURNAL, 2001, 40 (02) :394-409
[6]   Macromolecular crystallization in a high throughput laboratory-the search phase [J].
Luft, JR ;
Wolfley, J ;
Jurisica, I ;
Glasgow, J ;
Fortier, S ;
DeTitta, GT .
JOURNAL OF CRYSTAL GROWTH, 2001, 232 (1-4) :591-595
[7]  
Murphy KP, 1999, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, P467
[8]   High-throughput crystallography at an affordable cost: The TB Structural Genomics Consortium Crystallization Facility [J].
Rupp, B .
ACCOUNTS OF CHEMICAL RESEARCH, 2003, 36 (03) :173-181
[9]   Computational analysis of crystallization trials [J].
Spraggon, G ;
Lesley, SA ;
Kreusch, A ;
Priestle, JP .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2002, 58 :1915-1923
[10]  
WEISSTEIN E, 2003, E WEISSTEINS WORLD M