Novel non-endocytic delivery of antisense oligonucleotides

被引:61
作者
Dokka, S [1 ]
Rojanasakul, Y [1 ]
机构
[1] W Virginia Univ, Sch Pharm, Dept Basic Pharmaceut Sci, Morgantown, WV 26506 USA
关键词
antisense; oligonucleotides; membrane; transport; delivery; uptake; trafficking;
D O I
10.1016/S0169-409X(00)00082-X
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Antisense oligonucleotides (ONs) have several properties that make them attractive as therapeutic agents. Hybridization of antisense ONs to their complementary nucleic acid sequences by Watson-Crick base pairing is a highly selective and efficient process. Design of therapeutic antisense agents can be made more rationally as compared to most traditional drugs, i.e., they can be designed on the basis of target RNA sequences and their secondary structures. Despite these advantages, the design and use of antisense ONs as therapeutic agents are still faced with several obstacles. One major obstacle is their inefficient cellular uptake and poor accessibility to target sites. In this article, we will discuss key barriers affecting ON delivery and approaches to overcome these barriers. Current methods of ON delivery will be reviewed with an emphasis on novel non-endocytic methods of delivery. ONs are taken up by cells via an endocytic process. The process of ON release from endosomes is a very inefficient process and, hence, ONs end up being degraded in the endosomes. Thus, ONs do not reach their intended site of action in the cytoplasm or nucleus. Delivery systems ensuring a cytoplasmic delivery of ONs have the potential to increase the amount of ON reaching the target. Here, we shall examine various ON delivery methods that bypass the endosomal pathway. The advantages and disadvantages of these methods compared to other existing methods of ON delivery will be discussed. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:35 / 49
页数:15
相关论文
共 101 条
[91]   CELLULAR UPTAKE OF OLIGODEOXYNUCLEOTIDE PHOSPHOROTHIOATES AND THEIR ANALOGS [J].
TEMSAMANI, J ;
KUBERT, M ;
TANG, JY ;
PADMAPRIYA, A ;
AGRAWAL, S .
ANTISENSE RESEARCH AND DEVELOPMENT, 1994, 4 (01) :35-42
[92]  
THEODORE L, 1995, J NEUROSCI, V15, P7158
[93]  
Troy CM, 1996, J NEUROSCI, V16, P253
[94]   A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus [J].
Vives, E ;
Brodin, P ;
Lebleu, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (25) :16010-16017
[95]   TRANSPORT OF OLIGONUCLEOTIDES ACROSS NATURAL AND MODEL MEMBRANES [J].
VLASSOV, VV ;
BALAKIREVA, LA ;
YAKUBOV, LA .
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON BIOMEMBRANES, 1994, 1197 (02) :95-108
[96]   TRANSCENDING THE IMPENETRABLE - HOW PROTEINS COME TO TERMS WITH MEMBRANES [J].
VONHEIJNE, G .
BIOCHIMICA ET BIOPHYSICA ACTA, 1988, 947 (02) :307-333
[97]   THE SIGNAL PEPTIDE [J].
VONHEIJNE, G .
JOURNAL OF MEMBRANE BIOLOGY, 1990, 115 (03) :195-201
[98]  
WU GY, 1992, J BIOL CHEM, V267, P12436
[99]   ANTISENSE C-MYC OLIGODEOXYRIBONUCLEOTIDE CELLULAR UPTAKE [J].
WUPONG, S ;
WEISS, TL ;
HUNT, CA .
PHARMACEUTICAL RESEARCH, 1992, 9 (08) :1010-1017
[100]   MECHANISM OF OLIGONUCLEOTIDE UPTAKE BY CELLS - INVOLVEMENT OF SPECIFIC RECEPTORS [J].
YAKUBOV, LA ;
DEEVA, EA ;
ZARYTOVA, VF ;
IVANOVA, EM ;
RYTE, AS ;
YURCHENKO, LV ;
VLASSOV, VV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (17) :6454-6458