Identification of and symmetry computation for crystal nets

被引:287
作者
Delgado-Friedrichs, O [1 ]
O'Keeffe, M
机构
[1] Univ Tubingen, Dept Comp Sci, D-72076 Tubingen, Germany
[2] Arizona State Univ, Dept Chem, Tempe, AZ 85287 USA
来源
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES | 2003年 / 59卷
关键词
D O I
10.1107/S0108767303012017
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Exact methods are presented to determine whether two periodic nets are combinatorially isomorphic and to compute the full combinatorial symmetry group of a net. It is found that for a large class of nets, which includes all known zeolite nets and most other known crystal nets, this group can be realized as a crystallographic space group.
引用
收藏
页码:351 / 360
页数:10
相关论文
共 48 条
[1]   SYSTEMATIC ENUMERATION OF ZEOLITE FRAMEWORKS [J].
AKPORIAYE, DE ;
PRICE, GD .
ZEOLITES, 1989, 9 (01) :23-32
[2]   OPENING, STELLATION AND HANDLE REPLACEMENT OF EDGES OF THE CUBE, TETRAHEDRON AND HEXAGONAL PRISM - APPLICATION TO 3-CONNECTED 3-DIMENSIONAL POLYHEDRA AND (2,3)-CONNECTED POLYHEDRAL UNITS IN 3-DIMENSIONAL NETS [J].
ANDRIES, KJ ;
SMITH, JV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1994, 444 (1920) :217-238
[3]   The 3-regular nets with four and six vertices per unit cell [J].
Bader, M ;
Klee, WE ;
Thimm, G .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1997, 212 (08) :553-558
[4]   CRYSTAL STRUCTURE OF SYNTHETIC ZEOLITE L [J].
BARRER, RM ;
VILLIGER, H .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE KRISTALLGEOMETRIE KRISTALLPHYSIK KRISTALLCHEMIE, 1969, 128 (3-6) :352-&
[5]   MINIMAL NETS [J].
BEUKEMANN, A ;
KLEE, WE .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1992, 201 (1-2) :37-51
[6]   PROPERTIES OF COORDINATION SEQUENCES AND CONCLUSIONS REGARDING THE LOWEST POSSIBLE DENSITY OF ZEOLITES [J].
BRUNNER, GO .
JOURNAL OF SOLID STATE CHEMISTRY, 1979, 29 (01) :41-45
[7]   NOMENCLATURE AND GENERATION OF 3-PERIODIC NETS - THE VECTOR METHOD [J].
CHUNG, SJ ;
HAHN, T ;
KLEE, WE .
ACTA CRYSTALLOGRAPHICA SECTION A, 1984, 40 (JAN) :42-50
[8]  
DELGADOFRIEDRIC.O, 2003, UNPUB DISCRETE COMPU
[9]   TETRAGONAL SPHERE PACKINGS .3. LATTICE COMPLEXES WITH 3 DEGREES OF FREEDOM [J].
FISCHER, W .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1993, 205 :9-26
[10]   EXISTENCE CONDITIONS OF HOMOGENEOUS SPHERE PACKINGS FOR CUBIC LATTICE COMPLEXES WITH THREE DEGREES OF FREEDOM [J].
FISCHER, W .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1974, 140 (1-2) :50-74