Identification of and symmetry computation for crystal nets

被引:287
作者
Delgado-Friedrichs, O [1 ]
O'Keeffe, M
机构
[1] Univ Tubingen, Dept Comp Sci, D-72076 Tubingen, Germany
[2] Arizona State Univ, Dept Chem, Tempe, AZ 85287 USA
来源
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES | 2003年 / 59卷
关键词
D O I
10.1107/S0108767303012017
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Exact methods are presented to determine whether two periodic nets are combinatorially isomorphic and to compute the full combinatorial symmetry group of a net. It is found that for a large class of nets, which includes all known zeolite nets and most other known crystal nets, this group can be realized as a crystallographic space group.
引用
收藏
页码:351 / 360
页数:10
相关论文
共 48 条
[31]  
O'Keeffe M, 1999, CHEM-EUR J, V5, P2796, DOI 10.1002/(SICI)1521-3765(19991001)5:10<2796::AID-CHEM2796>3.0.CO
[32]  
2-6
[33]   UNINODAL 4-CONNECTED 3D NETS .1. NETS WITHOUT 3-RINGS OR 4-RINGS [J].
OKEEFFE, M ;
BRESE, NE .
ACTA CRYSTALLOGRAPHICA SECTION A, 1992, 48 :663-669
[34]  
OKEEFFE M, 1995, ACTA CRYSTALLOGR A, V51, P916, DOI 10.1107/S0108767395007744
[35]   UNINODAL 4-CONNECTED 3D NETS .2. NETS WITH 3-RINGS [J].
OKEEFFE, M .
ACTA CRYSTALLOGRAPHICA SECTION A, 1992, 48 :670-673
[36]   DENSE AND RARE 4-CONNECTED NETS [J].
OKEEFFE, M .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1991, 196 (1-4) :21-37
[37]  
OKEEFFE M, 1996, CRYSTAL STRUCTURES, V1
[38]  
Olson D.H., 2001, ATLAS ZEOLITE FRAMEW
[39]  
Press WH, 2002, Numerical Recipies in C
[40]  
RICHTERGEBERT J, 1996, REALISATION SPACES P