Mathematical foundations for a theory of confidence structures

被引:38
作者
Balch, Michael Scott [1 ]
机构
[1] Appl Biomath, Setauket, NY 11733 USA
基金
美国国家卫生研究院;
关键词
Confidence distribution; Dempster-Shafer; Random set; p-Value; Cartesian product;
D O I
10.1016/j.ijar.2012.05.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a new mathematical object: the confidence structure. A confidence structure represents inferential uncertainty in an unknown parameter by defining a belief function whose output is commensurate with Neyman-Pearson confidence. Confidence structures on a group of input variables can be propagated through a function to obtain a valid confidence structure on the output of that function. The theory of confidence structures is created by enhancing the extant theory of confidence distributions with the mathematical generality of Dempster-Shafer evidence theory. Mathematical proofs grounded in random set theory demonstrate the operative properties of confidence structures. The result is a new theory which achieves the holistic goals of Bayesian inference while maintaining the empirical rigor of frequentist inference. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1003 / 1019
页数:17
相关论文
共 28 条
[1]  
[Anonymous], 1996, ERROR GROWTH EXPT KN, DOI DOI 10.7208/CHICAGO/9780226511993.001.0001
[2]  
[Anonymous], STAT METHODS SCI INF
[3]  
[Anonymous], THEORY RANDOM SETS
[4]  
[Anonymous], THESIS VIRGINIA TECH
[5]  
[Anonymous], 4 INT C SENS AN MOD
[6]  
[Anonymous], 2006, Principles of statistical inference, DOI 10.1017/CBO9780511813559
[7]  
Barnett Vic., 1999, COMP STAT INFERENCE, V3rd
[8]  
Casella G., 2002, Statistical Inference Thomson Learning
[9]   The Dempster-Shafer calculus for statisticians [J].
Dempster, A. P. .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2008, 48 (02) :365-377
[10]  
Dempster AP, 2008, STUD FUZZ SOFT COMP, V219, P73