Mathematical foundations for a theory of confidence structures

被引:38
作者
Balch, Michael Scott [1 ]
机构
[1] Appl Biomath, Setauket, NY 11733 USA
基金
美国国家卫生研究院;
关键词
Confidence distribution; Dempster-Shafer; Random set; p-Value; Cartesian product;
D O I
10.1016/j.ijar.2012.05.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a new mathematical object: the confidence structure. A confidence structure represents inferential uncertainty in an unknown parameter by defining a belief function whose output is commensurate with Neyman-Pearson confidence. Confidence structures on a group of input variables can be propagated through a function to obtain a valid confidence structure on the output of that function. The theory of confidence structures is created by enhancing the extant theory of confidence distributions with the mathematical generality of Dempster-Shafer evidence theory. Mathematical proofs grounded in random set theory demonstrate the operative properties of confidence structures. The result is a new theory which achieves the holistic goals of Bayesian inference while maintaining the empirical rigor of frequentist inference. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1003 / 1019
页数:17
相关论文
共 28 条
[11]  
Dempster AP, 2008, STUD FUZZ SOFT COMP, V219, P35
[12]  
Dempster AP, 2008, STUD FUZZ SOFT COMP, V219, P761
[13]  
Dubois D, 2008, STUD FUZZ SOFT COMP, V219, P375
[14]  
Efron B, 1998, STAT SCI, V13, P95
[15]   The fiducial argument in statistical inference [J].
Fisher, RA .
ANNALS OF EUGENICS, 1935, 6 :391-398
[16]  
FRASER DAS, 1966, BIOMETRIKA, V53, P1
[17]  
Kohlas J., 1995, MATH THEORY HINTS
[18]  
Kyburg H.E., 1974, LOGICAL FDN STAT INF
[19]  
Liu LP, 2008, STUD FUZZ SOFT COMP, V219, P1, DOI 10.1007/978-3-540-44792-4
[20]  
Salicone S., 2007, Measurement uncertainty: an approach via the mathematical theory of evidence, DOI DOI 10.1007/978-0-387-46328-5