Weak univalence and connectedness of inverse images of continuous functions

被引:35
作者
Gowda, MS [1 ]
Sznajder, R
机构
[1] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
[2] Bowie State Univ, Dept Math, Bowie, MD 20715 USA
关键词
weak univalence; connectedness; complementarity problem;
D O I
10.1287/moor.24.1.255
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A continuous function f with domain X and range f(X) in R-n is weakly univalent if there is a sequence of continuous one-to-one functions on X converging tof uniformly on bounded subsets of X. In this article, we establish, under certain conditions, the connectedness of an inverse image f(-1)(q). The univalence results of Radulescu-Radulescu, More-Rheinboldt, and Gale-Nikaido follow from our main result. We also show that the solution set of a nonlinear complementarity problem corresponding to a continuous P-0-function is connected if it contains a nonempty bounded clopen set; in particular, the problem will have a unique solution if it has a locally unique solution.
引用
收藏
页码:255 / 261
页数:7
相关论文
共 21 条
[11]   On the connectedness of solution sets in linear complementarity problems [J].
Jones, C ;
Gowda, MS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 272 :33-44
[12]  
Krasnoselskii M. A., 1984, GEOMETRICAL METHODS
[13]  
Lloyd N., 1978, DEGREE THEORY
[14]  
More J. J., 1973, LINEAR ALGEBRA APPL, V6, P45
[15]  
More J. J., 1974, MATHEMATICAL PROGRAM, V6, P327, DOI [DOI 10.1007/BF01580248, 10.1007/BF01580248]
[16]  
MURTY KG, 1988, LINEARCOMPLEMENTARIT
[17]  
Parthasarathy T., 1983, LECT NOTES MATH, V977
[18]  
Radulescu M., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P951, DOI 10.1016/0362-546X(80)90007-3
[19]  
RAPSACK T, 1994, J OPTIM THEORY APPL, V80, P501
[20]  
ROBINSON SM, 1979, MATH PROGRAM STUD, V10, P128, DOI 10.1007/BFb0120850