Machine learning in materials science

被引:609
作者
Wei, Jing [1 ]
Chu, Xuan [1 ]
Sun, Xiang-Yu [1 ]
Xu, Kun [1 ]
Deng, Hui-Xiong [2 ]
Chen, Jigen [3 ]
Wei, Zhongming [2 ,4 ]
Lei, Ming [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, State Key Lab Superlattices & Microstruct, Ctr Mat Sci & Optoelect Engn, Inst Semicond,Chinese Acad Sci, Beijing 100083, Peoples R China
[3] Taizhou Univ, Zhejiang Prov Key Lab Cutting Tools, Taizhou, Peoples R China
[4] Beijing Acad Quantum Informat Sci, Beijing, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
data processing; deep learning; machine learning; modeling; validation; SUPPORT VECTOR MACHINES; CONVOLUTIONAL NEURAL-NETWORKS; ORGANIC PHOTOVOLTAICS; REINFORCED-CONCRETE; CROSS-VALIDATION; FORCE-FIELD; DEEP; DESIGN; CLASSIFICATION; DISCOVERY;
D O I
10.1002/inf2.12028
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Traditional methods of discovering new materials, such as the empirical trial and error method and the density functional theory (DFT)-based method, are unable to keep pace with the development of materials science today due to their long development cycles, low efficiency, and high costs. Accordingly, due to its low computational cost and short development cycle, machine learning is coupled with powerful data processing and high prediction performance and is being widely used in material detection, material analysis, and material design. In this article, we discuss the basic operational procedures in analyzing material properties via machine learning, summarize recent applications of machine learning algorithms to several mature fields in materials science, and discuss the improvements that are required for wide-ranging application.
引用
收藏
页码:338 / 358
页数:21
相关论文
共 145 条
[51]   Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies [J].
Hansen, Katja ;
Montavon, Gregoire ;
Biegler, Franziska ;
Fazli, Siamac ;
Rupp, Matthias ;
Scheffler, Matthias ;
von Lilienfeld, O. Anatole ;
Tkatchenko, Alexandre ;
Mueller, Klaus-Robert .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (08) :3404-3419
[52]   Deep Learning [J].
Hao, Xing ;
Zhang, Guigang ;
Ma, Shang .
INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2016, 10 (03) :417-439
[53]   Finding Nature's Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory [J].
Hautier, Geoffroy ;
Fischer, Christopher C. ;
Jain, Anubhav ;
Mueller, Tim ;
Ceder, Gerbrand .
CHEMISTRY OF MATERIALS, 2010, 22 (12) :3762-3767
[54]   Connectomic reconstruction of the inner plexiform layer in the mouse retina [J].
Helmstaedter, Moritz ;
Briggman, Kevin L. ;
Turaga, Srinivas C. ;
Jain, Viren ;
Seung, H. Sebastian ;
Denk, Winfried .
NATURE, 2013, 500 (7461) :168-+
[55]   Deep Neural Networks for Acoustic Modeling in Speech Recognition [J].
Hinton, Geoffrey ;
Deng, Li ;
Yu, Dong ;
Dahl, George E. ;
Mohamed, Abdel-rahman ;
Jaitly, Navdeep ;
Senior, Andrew ;
Vanhoucke, Vincent ;
Patrick Nguyen ;
Sainath, Tara N. ;
Kingsbury, Brian .
IEEE SIGNAL PROCESSING MAGAZINE, 2012, 29 (06) :82-97
[56]   WAVELET SCATTERING REGRESSION OF QUANTUM CHEMICAL ENERGIES [J].
Hirn, Matthew ;
Mallat, Stephane ;
Poilvert, Nicolas .
MULTISCALE MODELING & SIMULATION, 2017, 15 (02) :827-863
[57]  
Huang B, ARXIV170704146PHYSIC
[58]   Commentary: The Materials Project: A materials genome approach to accelerating materials innovation [J].
Jain, Anubhav ;
Shyue Ping Ong ;
Hautier, Geoffroy ;
Chen, Wei ;
Richards, William Davidson ;
Dacek, Stephen ;
Cholia, Shreyas ;
Gunter, Dan ;
Skinner, David ;
Ceder, Gerbrand ;
Persson, Kristin A. .
APL MATERIALS, 2013, 1 (01)
[59]  
Jangir B., 2019, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), DOI 10.23919/URSIAP-RASC.2019.8738449
[60]   Convolutional Neural Network Based Fault Detection for Rotating Machinery [J].
Janssens, Olivier ;
Slavkovikj, Viktor ;
Vervisch, Bram ;
Stockman, Kurt ;
Loccufier, Mia ;
Verstockt, Steven ;
Van de Walle, Rik ;
Van Hoecke, Sofie .
JOURNAL OF SOUND AND VIBRATION, 2016, 377 :331-345