Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by decreasing oxidative stress

被引:80
作者
Alvarez Viveros, Maria Fernanda [1 ,2 ]
Inostroza-Blancheteau, Claudio [3 ]
Timmermann, Tania [4 ]
Gonzalez, Maximo [2 ]
Arce-Johnson, Patricio [1 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Ciencias Biol, Dept Mol Genet & Microbiol, Av Alameda 340,POB 114-D, Santiago, Chile
[2] Pontificia Univ Catolica Chile, Fac Agron & Ingn Forestal, Santiago, Chile
[3] Univ Catolica Temuco, Escuela Agron, Fac Recursos Nat, Nucleo Invest Prod Alimentaria, Temuco, Chile
[4] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago, Chile
关键词
Salt tolerance; Transgenic tomato; Glyoxalase genes; Oxidative stress; Reactive oxygen species; LIPID-PEROXIDATION; GLYOXALASE PATHWAY; CHLOROPHYLL; SALINITY; ACID; METHYLGLYOXAL; ANTIOXIDANTS; EXTRACTION; EXPRESSION; RESPONSES;
D O I
10.1007/s11033-012-2403-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The glyoxalase system plays an important role in various physiological processes in plants, including salt stress tolerance. We report the effects of overexpressing glyoxalase I and glyoxalase II genes in transgenic tomato (Solanum lycopersicum Mill.) cv. Ailsa Craig. Stable expression of both transgenes was detected in the transformed tomato plants under salt stress. The transgenic lines overexpressing GlyI and GlyII under a high NaCl concentration (800 mM) showed reduced lipid peroxidation and the production of H2O2 in leaf tissues. A greater decrease in the chlorophyll a+b content in wild-type (WT) compared with transgenic lines was also observed. These results suggest that the over expression of two genes, GlyI and GlyII, may enhance salt stress tolerance by decreasing oxidative stress in transformed tomato plants. This work will help our understanding of the putative role of the glyoxalase system in the tolerance to abiotic stress in tomato plants.
引用
收藏
页码:3281 / 3290
页数:10
相关论文
共 49 条
[1]   Plant molecular stress responses face climate change [J].
Ahuja, Ishita ;
de Vos, Ric C. H. ;
Bones, Atle M. ;
Hall, Robert D. .
TRENDS IN PLANT SCIENCE, 2010, 15 (12) :664-674
[2]   COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS [J].
ARNON, DI .
PLANT PHYSIOLOGY, 1949, 24 (01) :1-15
[3]  
Arora A, 2002, CURR SCI INDIA, V82, P1227
[4]   A REAPPRAISAL OF THE USE OF DMSO FOR THE EXTRACTION AND DETERMINATION OF CHLOROPHYLLS-A AND CHLOROPHYLLS-B IN LICHENS AND HIGHER-PLANTS [J].
BARNES, JD ;
BALAGUER, L ;
MANRIQUE, E ;
ELVIRA, S ;
DAVISON, AW .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 1992, 32 (02) :85-100
[5]   Solanum lycopersicon Mill. and Nicotiana benthamiana L. under high light show distinct responses to anti-oxidative stress [J].
Carvalho, Luisa C. ;
Santos, Sonia ;
Jorge Vilela, B. ;
Amancio, Sara .
JOURNAL OF PLANT PHYSIOLOGY, 2008, 165 (12) :1300-1312
[6]   MODIFIED THIOBARBITURIC ACID ASSAY FOR MEASURING LIPID OXIDATION IN SUGAR-RICH PLANT-TISSUE EXTRACTS [J].
DU, ZY ;
BRAMLAGE, WJ .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 1992, 40 (09) :1566-1570
[7]  
Ehrenfeld N, 2005, MOL CELLS, V19, P418
[8]  
Flores P, 2004, CAN J BOT, V82, P207, DOI [10.1139/b03-152, 10.1139/B03-152]
[9]   Genetic potential for salt tolerance during germination in Lycopersicon species [J].
Foolad, MR ;
Lin, GY .
HORTSCIENCE, 1997, 32 (02) :296-300
[10]   Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots [J].
Gapinska, Magdalena ;
Sklodowska, Maria ;
Gabara, Barbara .
ACTA PHYSIOLOGIAE PLANTARUM, 2008, 30 (01) :11-18