Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by decreasing oxidative stress

被引:80
作者
Alvarez Viveros, Maria Fernanda [1 ,2 ]
Inostroza-Blancheteau, Claudio [3 ]
Timmermann, Tania [4 ]
Gonzalez, Maximo [2 ]
Arce-Johnson, Patricio [1 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Ciencias Biol, Dept Mol Genet & Microbiol, Av Alameda 340,POB 114-D, Santiago, Chile
[2] Pontificia Univ Catolica Chile, Fac Agron & Ingn Forestal, Santiago, Chile
[3] Univ Catolica Temuco, Escuela Agron, Fac Recursos Nat, Nucleo Invest Prod Alimentaria, Temuco, Chile
[4] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago, Chile
关键词
Salt tolerance; Transgenic tomato; Glyoxalase genes; Oxidative stress; Reactive oxygen species; LIPID-PEROXIDATION; GLYOXALASE PATHWAY; CHLOROPHYLL; SALINITY; ACID; METHYLGLYOXAL; ANTIOXIDANTS; EXTRACTION; EXPRESSION; RESPONSES;
D O I
10.1007/s11033-012-2403-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The glyoxalase system plays an important role in various physiological processes in plants, including salt stress tolerance. We report the effects of overexpressing glyoxalase I and glyoxalase II genes in transgenic tomato (Solanum lycopersicum Mill.) cv. Ailsa Craig. Stable expression of both transgenes was detected in the transformed tomato plants under salt stress. The transgenic lines overexpressing GlyI and GlyII under a high NaCl concentration (800 mM) showed reduced lipid peroxidation and the production of H2O2 in leaf tissues. A greater decrease in the chlorophyll a+b content in wild-type (WT) compared with transgenic lines was also observed. These results suggest that the over expression of two genes, GlyI and GlyII, may enhance salt stress tolerance by decreasing oxidative stress in transformed tomato plants. This work will help our understanding of the putative role of the glyoxalase system in the tolerance to abiotic stress in tomato plants.
引用
收藏
页码:3281 / 3290
页数:10
相关论文
共 49 条
[21]   Characterization of the glyoxalase I gene from the vascular wilt fungus Verticillium dahliae [J].
Klimes, A. ;
Neumann, M. J. ;
Grant, S. J. ;
Dobinson, K. F. .
CANADIAN JOURNAL OF MICROBIOLOGY, 2006, 52 (09) :816-822
[22]  
Kyte L., 1996, Plants from Test Tubes: An Introduction to Micropropagation
[23]   Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses [J].
Li, Daofeng ;
Zhang, Yunqin ;
Hu, Xiaona ;
Shen, Xiaoye ;
Ma, Lei ;
Su, Zhen ;
Wang, Tao ;
Dong, Jiangli .
BMC PLANT BIOLOGY, 2011, 11
[24]   Molecular cloning and characterization of a novel glyoxalase I gene TaGly I in wheat (Triticum aestivum L.) [J].
Lin, Fanyun ;
Xu, Jianhong ;
Shi, Jianrong ;
Li, Hongwei ;
Li, Bin .
MOLECULAR BIOLOGY REPORTS, 2010, 37 (02) :729-735
[25]   Reactive oxygen gene network of plants [J].
Mittler, R ;
Vanderauwera, S ;
Gollery, M ;
Van Breusegem, F .
TRENDS IN PLANT SCIENCE, 2004, 9 (10) :490-498
[26]   Oxidative stress, antioxidants and stress tolerance [J].
Mittler, R .
TRENDS IN PLANT SCIENCE, 2002, 7 (09) :405-410
[27]   Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth [J].
Miyagawa, Y ;
Tamoi, M ;
Shigeoka, S .
NATURE BIOTECHNOLOGY, 2001, 19 (10) :965-969
[28]   INHERENT LIMITATIONS OF NONDESTRUCTIVE CHLOROPHYLL METERS - A COMPARISON OF 2 TYPES OF METERS [J].
MONJE, OA ;
BUGBEE, B .
HORTSCIENCE, 1992, 27 (01) :69-71
[29]   Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice [J].
Nam, Myung Hee ;
Huh, Sun Mi ;
Kim, Kyung Mi ;
Park, Woong June ;
Seo, Jong Bok ;
Cho, Kun ;
Kim, Dool Yi ;
Kim, Beom Gi ;
Yoon, In Sun .
PROTEOME SCIENCE, 2012, 10
[30]  
Pang Cai-Hong, 2008, V69, P231, DOI 10.1007/978-3-540-72954-9_9