Volume overload results in eccentric cardiac hypertrophy, but it is still unknown how this mechanical overload modulates the inotropic response to exogenous Ca2+ or adenylyl cyclase stimulation. Inotropic responsiveness in vivo and the levels of gene expression of Ca2+ signaling proteins were studied in rabbit hearts hypertrophied as a result of volume overload at 4 and 12 weeks after arteriovenous shunt formation. In sham-operated control rabbits, left ventricular (LV) + dP/dt was augmented in response to graded doses of CaCl2. Dose-related changes of LV+dP/dt to CaCl2 were attenuated significantly in shunt rabbits with volume overload. Forskolin dose-dependently augmented LV+dP/dt in sham rabbits, which was also attenuated significantly in rabbits with volume overload. The mRNA levels of dihydropyridine receptor, Na+/Ca2+ exchanger, sarcoplasmic reticulum Ca2+-ATPase, and ryanodine receptor decreased significantly at 4 and 12 weeks in the volume-overload rabbits compared with the sham rabbits, but the mRNA levels of phospholamban and calsequestrin remained unchanged. Chronic volume overload alters contractile responsiveness to Ca2+ or adenylyl cyclase stimulation, and downregulation of steady state mRNA levels of Ca2+ signaling proteins might be, at least in part, related to this pathologic process.