Glial cell line-derived neurotrophic factor expression in skin alters the mechanical sensitivity of cutaneous nociceptors

被引:87
作者
Albers, KM
Woodbury, CJ
Ritter, AM
Davis, BM
Koerber, HR [1 ]
机构
[1] Univ Pittsburgh, Dept Neurobiol, Sch Med, Pittsburgh, PA 15261 USA
[2] Univ Pittsburgh, Dept Med, Sch Med, Pittsburgh, PA 15261 USA
关键词
nociceptor; C-fiber; GDNF expression; sensory neuron; TRPV; channel;
D O I
10.1523/JNEUROSCI.4863-05.2006
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neurons classified as nociceptors are dependent on nerve growth factor (NGF) during embryonic development, but a large subpopulation lose this dependence during embryonic and postnatal times and become responsive to the transforming growth factor beta family member, glial cell line-derived growth factor ( GDNF). To elucidate the functional properties of GDNF-dependent nociceptors and distinguish them from nociceptors that retain NGF dependence, the cellular and physiologic properties of sensory neurons of wild-type and transgenic mice that overexpress GDNF in the skin (GDNF-OE) were analyzed using a skin, nerve, dorsal root ganglion, and spinal cord preparation, immunolabeling, and reverse transcriptase-PCR assays. Although an increase in peripheral conduction velocity of C-fibers in GDNF-OE mice was measured, other electrophysiological properties, including resting membrane potential and somal action potentials, were unchanged. We also show that isolectin B4 (IB4)-positive neurons, many of which are responsive to GDNF, exhibited significantly lower thresholds to mechanical stimulation relative to wild-type neurons. However, no change was observed in heat thresholds for the same population of cells. The increase in mechanical sensitivity was found to correlate with significant increases in acid-sensing ion channels 2A and 2B and transient receptor potential channel A1, which are thought to contribute to detection of mechanical stimuli. These data indicate that enhanced expression of GDNF in the skin can change mechanical sensitivity of IB4-positive nociceptive afferents and that this may occur through enhanced expression of specific types of channel proteins.
引用
收藏
页码:2981 / 2990
页数:10
相关论文
共 60 条
[1]   The GDNF family: Signalling, biological functions and therapeutic value [J].
Airaksinen, MS ;
Saarma, M .
NATURE REVIEWS NEUROSCIENCE, 2002, 3 (05) :383-394
[2]   OVEREXPRESSION OF NERVE GROWTH-FACTOR IN EPIDERMIS OF TRANSGENIC MICE CAUSES HYPERTROPHY OF THE PERIPHERAL NERVOUS-SYSTEM [J].
ALBERS, KM ;
WRIGHT, DE ;
DAVIS, BM .
JOURNAL OF NEUROSCIENCE, 1994, 14 (03) :1422-1432
[3]   The GDNF family ligands and receptors - implications for neural development [J].
Baloh, RH ;
Enomoto, H ;
Johnson, EM ;
Milbrandt, J .
CURRENT OPINION IN NEUROBIOLOGY, 2000, 10 (01) :103-110
[4]  
Bennett DLH, 1998, J NEUROSCI, V18, P3059
[5]   Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons [J].
Benson, CJ ;
Xie, JH ;
Wemmie, JA ;
Price, MP ;
Henss, JM ;
Welsh, MJ ;
Snyder, PM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (04) :2338-2343
[6]   DYNAMIC PROPERTIES OF MECHANORECEPTORS WITH UNMYELINATED (C) FIBERS [J].
BESSOU, P ;
BURGESS, PR ;
PERL, ER ;
TAYLOR, CB .
JOURNAL OF NEUROPHYSIOLOGY, 1971, 34 (01) :116-&
[7]   Potent analgesic effects of GDNF in neuropathic pain states [J].
Boucher, TJ ;
Okuse, K ;
Bennett, DLH ;
Munson, JB ;
Wood, JN ;
McMahon, SB .
SCIENCE, 2000, 290 (5489) :124-127
[8]   The vanilloid receptor: A molecular gateway to the pain pathway [J].
Caterina, MJ ;
Julius, D .
ANNUAL REVIEW OF NEUROSCIENCE, 2001, 24 :487-517
[9]   Impaired nociception and pain sensation in mice lacking the capsaicin receptor [J].
Caterina, MJ ;
Leffler, A ;
Malmberg, AB ;
Martin, WJ ;
Trafton, J ;
Petersen-Zeitz, KR ;
Koltzenburg, M ;
Basbaum, AI ;
Julius, D .
SCIENCE, 2000, 288 (5464) :306-313
[10]   The capsaicin receptor: a heat-activated ion channel in the pain pathway [J].
Caterina, MJ ;
Schumacher, MA ;
Tominaga, M ;
Rosen, TA ;
Levine, JD ;
Julius, D .
NATURE, 1997, 389 (6653) :816-824