Posttranslational modification of serine to formylglycine in bacterial sulfatases - Recognition of the modification motif by the iron-sulfur protein AtsB

被引:39
作者
Marquordt, C
Fang, QH
Will, E
Peng, JH
von Figura, K
Dierks, T
机构
[1] Univ Gottingen, Inst Biochem & Mol Zellbiol, Biochem Abt 2, D-37073 Gottingen, Germany
[2] Max Planck Inst Biophys Chem, Abt Mol Genet, D-37070 Gottingen, Germany
关键词
D O I
10.1074/jbc.M209435200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Calpha-formylglycine is the catalytic residue of sulfatases. Formylglycine is generated by posttranslational modification of a cysteine (pro- and eukaryotes) or serine (pro-karyotes) located in a conserved (C/S)XPXR motif. The modifying enzymes are unknown. AtsB, an iron-sulfur protein, is strictly required for modification of Se-72 in the periplasmic sulfatase AtsA of Klebsiella pneumoniae. Here we show W that AtsB is a cytosolic protein acting on newly synthesized serine-type sulfatases, (ii) that AtsB-mediated FGly formation is dependent on AtsA's signal peptide, and (iii) that the cytosolic cysteine-type sulfatase of Pseudomonas aeruginosa can be converted into a substrate of AtsB if the cysteine is substituted by serine and a signal peptide is added. Thus, formylglycine formation in serine-type sulfatases depends both on AtsB and on the presence of a signal peptide, and AtsB can act on sulfatases of other species. AtsB physically interacts with AtsA in a Ser(72)-dependent manner, as shown in yeast two-hybrid and GST pulldown experiments. This strongly suggests that AtsB is the serine-modifying enzyme and that AtsB relies on a cytosolic function of the sulfatase's signal peptide.
引用
收藏
页码:2212 / 2218
页数:7
相关论文
共 35 条
[1]  
BEIL S, 1995, EUR J BIOCHEM, V229, P385, DOI 10.1111/j.1432-1033.1995.tb20479.x
[2]   1.3 Å structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family [J].
Boltes, I ;
Czapinska, H ;
Kahnert, A ;
von Bülow, R ;
Dierks, T ;
Schmidt, B ;
von Figura, K ;
Kertesz, MA ;
Usón, I .
STRUCTURE, 2001, 9 (06) :483-491
[3]   Structure of a human lysosomal sulfatase [J].
Bond, CS ;
Clements, PR ;
Ashby, SJ ;
Collyer, CA ;
Harrop, SJ ;
Hopwood, JJ ;
Guss, JM .
STRUCTURE, 1997, 5 (02) :277-289
[4]   Adenosylmethionine-dependent iron-sulfur enzymes: versatile clusters in a radical new role [J].
Cheek, J ;
Broderick, JB .
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2001, 6 (03) :209-226
[5]   Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus [J].
Chin, KC ;
Cresswell, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (26) :15125-15130
[6]   CHARACTERIZATION OF SAP-1, A PROTEIN RECRUITED BY SERUM RESPONSE FACTOR TO THE C-FOS SERUM RESPONSE ELEMENT [J].
DALTON, S ;
TREISMAN, R .
CELL, 1992, 68 (03) :597-612
[7]   Conversion of cysteine to formylglycine in eukaryotic sulfatases occurs by a common mechanism in the endoplasmic reticulum [J].
Dierks, T ;
Lecca, MR ;
Schmidt, B ;
von Figura, K .
FEBS LETTERS, 1998, 423 (01) :61-65
[8]   Conversion of cysteine to formylglycine: A protein modification in the endoplasmic reticulum [J].
Dierks, T ;
Schmidt, B ;
VonFigura, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (22) :11963-11968
[9]   A microsomal ATP-binding protein involved in efficient protein transport into the mammalian endoplasmic reticulum [J].
Dierks, T ;
Volkmer, J ;
Schlenstedt, G ;
Jung, C ;
Sandholzer, U ;
Zachmann, K ;
Schlotterhose, P ;
Neifer, K ;
Schmidt, B ;
Zimmermann, R .
EMBO JOURNAL, 1996, 15 (24) :6931-6942
[10]   Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine [J].
Dierks, T ;
Miech, C ;
Hummerjohann, J ;
Schmidt, B ;
Kertesz, MA ;
von Figura, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (40) :25560-25564