Transduction of envelope stress in Escherichia coli by the Cpx two-component system

被引:222
作者
Raivio, TL [1 ]
Silhavy, TJ [1 ]
机构
[1] PRINCETON UNIV, DEPT MOL BIOL, PRINCETON, NJ 08544 USA
关键词
D O I
10.1128/jb.179.24.7724-7733.1997
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Disruption of normal protein trafficking in the Escherichia call cell envelope (inner membrane, periplasm, outer membrane) can activate two parallel, but distinct, signal transduction pathways. This activation stimulates the expression of a number of genes whose products function to fold or degrade the mislocalized proteins. One of these signal transduction pathways is a two-component regulatory system comprised of the histidine kinase CpxA and the response regulator, CpxR. In this study we characterized gain-of-function Cpx* mutants in order to learn more about Cpx signal transduction. Sequencing demonstrated that the cpx* mutations cluster in either the periplasmic, the transmembrane, or the II-box domain of CpxA. Intriguingly, most of the periplasmic cpx* gain-of-function mutations cluster in the central region of this domain, and one encodes a deletion of 32 amino acids. Strains harboring these mutations are rendered insensitive to a normally activating signal. In vivo and in vitro characterization of maltose-binding-protein fusions between the wild-type CpxA and a representative cpx* mutant, CpxA101, showed that the mutant CpxA is altered in phosphotransfer reactions with CpxR. Specifically, while both CpxA and CpxA101 function as autokinases and CpxR kinases, CpxA101 is devoid of a CpxR-P phosphatase activity normally present in the wild-type protein. Taken together, the data support a model for Cpx-mediated signal transduction in which the kinase/phosphatase ratio is elevated by stress. Further, the sequence and phenotypes of periplasmic cpx* mutations suggest that interactions with a periplasmic signaling molecule may normally dictate a decreased kinase/phosphatase ratio under nonstress conditions.
引用
收藏
页码:7724 / 7733
页数:10
相关论文
共 76 条
[1]  
AIBA H, 1989, J BIOL CHEM, V264, P14090
[2]   PHOSPHORYLATION OF A BACTERIAL ACTIVATOR PROTEIN, OMPR, BY A PROTEIN-KINASE, ENVZ, RESULTS IN STIMULATION OF ITS DNA-BINDING ABILITY [J].
AIBA, H ;
NAKASAI, F ;
MIZUSHIMA, S ;
MIZUNO, T .
JOURNAL OF BIOCHEMISTRY, 1989, 106 (01) :5-7
[3]  
AKIYAMA Y, 1992, J BIOL CHEM, V267, P22440
[4]   A PATHWAY FOR DISULFIDE BOND FORMATION INVIVO [J].
BARDWELL, JCA ;
LEE, JO ;
JANDER, G ;
MARTIN, N ;
BELIN, D ;
BECKWITH, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (03) :1038-1042
[5]   IDENTIFICATION OF A PROTEIN REQUIRED FOR DISULFIDE BOND FORMATION INVIVO [J].
BARDWELL, JCA ;
MCGOVERN, K ;
BECKWITH, J .
CELL, 1991, 67 (03) :581-589
[6]   TRANSPOSITION AND FUSION OF LAC GENES TO SELECTED PROMOTERS IN ESCHERICHIA-COLI USING BACTERIOPHAGE-LAMBDA AND BACTERIOPHAGE-MU [J].
CASADABAN, MJ .
JOURNAL OF MOLECULAR BIOLOGY, 1976, 104 (03) :541-555
[7]   Role of the periplasmic domain of the Escherichia coli NarX sensor-transmitter protein in nitrate-dependent signal transduction and gene regulation [J].
Cavicchioli, R ;
Chiang, RC ;
Kalman, LV ;
Gunsalus, RP .
MOLECULAR MICROBIOLOGY, 1996, 21 (05) :901-911
[8]   LOCK ON OFF DISULFIDES IDENTIFY THE TRANSMEMBRANE SIGNALING HELIX OF THE ASPARTATE RECEPTOR [J].
CHERVITZ, SA ;
FALKE, JJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (41) :24043-24053
[9]   Molecular mechanism of transmembrane signaling by the aspartate receptor: A model [J].
Chervitz, SA ;
Falke, JJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (06) :2545-2550
[10]   MUTATIONAL ANALYSIS REVEALS FUNCTIONAL SIMILARITY BETWEEN NARX, A NITRATE SENSOR IN ESCHERICHIA-COLI K-12, AND THE METHYL-ACCEPTING CHEMOTAXIS PROTEINS [J].
COLLINS, LA ;
EGAN, SM ;
STEWART, V .
JOURNAL OF BACTERIOLOGY, 1992, 174 (11) :3667-3675