Three coupled oscillators as a universal probe of synchronization stability in coupled oscillator arrays

被引:136
作者
Fink, KS [1 ]
Johnson, G
Carroll, T
Mar, D
Pecora, L
机构
[1] Columbia Univ, New York, NY 10027 USA
[2] USN, Res Lab, Washington, DC 20375 USA
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 05期
关键词
D O I
10.1103/PhysRevE.61.5080
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that the stability surface that governs the synchronization of a large class of arrays of identical oscillators can be probed with a simple array of just three identical oscillators. Experimentally this implies that it may be possible to probe the synchronization conditions of many arrays all at the same time. In the process of developing a theory of the three-oscillator probe, we also show that several regimes of asymptotic coupling can be derived for the array classes, including the case of large imaginary coupling, which apparently has not been explored.
引用
收藏
页码:5080 / 5090
页数:11
相关论文
共 39 条
[21]  
KURAMOTO Y, 1975, LECT NOTE PHYS, V39, DOI DOI 10.1007/BFB0013365
[22]  
PECORA LJ, UNPUB
[23]   Master stability functions for synchronized coupled systems [J].
Pecora, LM ;
Carroll, TL .
PHYSICAL REVIEW LETTERS, 1998, 80 (10) :2109-2112
[24]   SYNCHRONIZATION IN CHAOTIC SYSTEMS [J].
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW LETTERS, 1990, 64 (08) :821-824
[25]   Fundamentals of synchronization in chaotic systems, concepts, and applications [J].
Pecora, LM ;
Carroll, TL ;
Johnson, GA ;
Mar, DJ ;
Heagy, JF .
CHAOS, 1997, 7 (04) :520-543
[26]   DRIVING SYSTEMS WITH CHAOTIC SIGNALS [J].
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW A, 1991, 44 (04) :2374-2383
[27]   CHAOTIC SYNCHRONIZATION OF A ONE-DIMENSIONAL ARRAY OF NONLINEAR ACTIVE SYSTEMS [J].
Perez-Villar, V. ;
Munuzuri, A. P. ;
Perez-Munuzuri, V. ;
Chua, L. O. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (04) :1067-1074
[28]  
PIKOVSKII AS, 1984, QUANTUM ELECTRON, V27, P390
[29]   EQUATION FOR CONTINUOUS CHAOS [J].
ROSSLER, OE .
PHYSICS LETTERS A, 1976, 57 (05) :397-398
[30]   Robustness of synchronized chaotic oscillations [J].
Rulkov, NF ;
Sushchik, MM .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (03) :625-643