In this paper, the proof of principle of microwave-accelerated aggregation assay technology, which shortens the solution-based aggregation assays' run time to seconds (> 100-fold increase in kinetics) with microwave heating, was demonstrated using a model aggregation assay based on the well-known interactions of biotin and avidin. Biotinylated gold colloids were aggregated in solution with the addition of streptavidin, which takes 20 min at room temperature to reach > 90% completion and only 10 s with microwave heating. The initial velocity (after 1-s microwave heating) of the biotinylated gold colloids reaches up to 10.5 m/s, which gives rise to greater sampling of the total volume but not a large increase in bulk temperature. The room-temperature, steady-state velocity of the colloids was < 0.5 mu m/s. In control experiments, where streptavidin preincubated with D-biotin in solution is added to biotinylated gold colloids and microwave heated, gold colloids did not aggregate, demonstrating that nonspecific interactions between biotinylated gold colloids and streptavidin were negligible.