Effects of material hydrophobicity on physical properties of polymeric microspheres formed by double emulsion process

被引:84
作者
Ruan, G
Feng, SS
Li, QT
机构
[1] Natl Univ Singapore, Fac Engn, Dept Chem & Environm Engn, Singapore 119260, Singapore
[2] Natl Univ Singapore, Fac Engn, Div Bioengn, Singapore 119260, Singapore
[3] Natl Univ Singapore, Fac Med, Dept Biochem, Singapore 119260, Singapore
关键词
protein delivery; microspheres; PELA; vitamin E TPGS; internal morphology;
D O I
10.1016/S0168-3659(02)00292-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Human serum albumin (HSA) was encapsulated as a model protein in microspheres of biodegradable and biocompatible polymers by the water-in-oil-in-water (w/o/w) emulsion solvent extraction/evaporation (double emulsion) technique for purpose of controlled release. To improve the properties and control the rate of drug release of the delivery vehicle, materials with different hydrophobicity from that of their conventional counterparts, such as poly(lactide-co-ethylene glycol) (PELA) in place of poly(lactide-co-glycolide) (PLGA) as the polymer matrix, ethyl acetate/acetone in place of dichloride methane (DCM) as the (co)solvent and d-alpha tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) as the additive, were used to prepare the microspheres. It has been found that PELA microspheres, compared with PLGA ones, were slightly smaller in size if prepared at identical emulsification strength. They had more porous surface and internal structure, higher encapsulation efficiency (EE) and more rapid in vitro release rate. Furthermore, the physical properties of the microspheres were also affected by the presence of solvents and additives and their properties. Our results suggest that these materials could have interesting potential applications in preparation of polymeric microspheres for controlled protein release. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:151 / 160
页数:10
相关论文
共 29 条
[1]  
[Anonymous], 1995, ENCY HDB BIOMATERIAL
[2]   PREPARATION OF BIODEGRADABLE MICROSPHERES AND MICROCAPSULES .2. POLYACTIDES AND RELATED POLYESTERS [J].
ARSHADY, R .
JOURNAL OF CONTROLLED RELEASE, 1991, 17 (01) :1-21
[3]   STEALTH ME.PEG-PLA NANOPARTICLES AVOID UPTAKE BY THE MONONUCLEAR PHAGOCYTES SYSTEM [J].
BAZILE, D ;
PRUDHOMME, C ;
BASSOULLET, MT ;
MARLARD, M ;
SPENLEHAUER, G ;
VEILLARD, M .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1995, 84 (04) :493-498
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   Multiple emulsion technology for the design of microspheres containing peptides and oligopeptides [J].
Couvreur, P ;
BlancoPrieto, MJ ;
Puisieux, F ;
Roques, B ;
Fattal, E .
ADVANCED DRUG DELIVERY REVIEWS, 1997, 28 (01) :85-96
[6]  
Dass CR, 1999, DRUG DELIV, V6, P243
[7]   Influence of the co-encapsulation of different non-ionic surfactants on the properties of PLGA insulin-loaded microspheres [J].
De Rosa, G ;
Iommelli, R ;
La Rotonda, MI ;
Miro, A ;
Quaglia, F .
JOURNAL OF CONTROLLED RELEASE, 2000, 69 (02) :283-295
[8]   Optimization of preparative conditions for poly-DL-lactide-polyethylene glycol microspheres with entrapped Vibrio Cholera antigens [J].
Deng, XM ;
Li, XH ;
Yuan, ML ;
Xiong, CD ;
Huang, ZT ;
Jia, WX ;
Zhang, YH .
JOURNAL OF CONTROLLED RELEASE, 1999, 58 (02) :123-131
[9]   SYNTHESIS AND CHARACTERIZATION OF BLOCK COPOLYMERS FROM D,L-LACTIDE AND POLY(ETHYLENE GLYCOL) WITH STANNOUS CHLORIDE [J].
DENG, XM ;
XIONG, CD ;
CHENG, LM ;
XU, RP .
JOURNAL OF POLYMER SCIENCE PART C-POLYMER LETTERS, 1990, 28 (13) :411-416
[10]   Strengthening biomedicine's roots [J].
Dill, KA .
NATURE, 1999, 400 (6742) :309-310