Photoelectrochemical behavior of nanostructured WO3 thin-film electrodes:: The oxidation of formic acid

被引:56
作者
Monllor-Satoca, Damian
Borja, Luis
Rodes, Antonio
Gomez, Roberto
Salvador, Pedro
机构
[1] Univ Alacant, Dept Quim Fis, Alacant 03080, Spain
[2] Univ Alacant, Inst Univ Elect, Alacant 03080, Spain
[3] CSIC, Inst Catalisis & Petr Quim, E-28049 Madrid, Spain
关键词
heterogeneous catalysis; kinetics; nanostructures; photoelectrochemistry; tungsten trioxide; ELECTROCHEMICALLY ASSISTED PHOTOCATALYSIS; TUNGSTEN TRIOXIDE; TITANIUM-DIOXIDE; PHOTOELECTROCATALYTIC DEGRADATION; CARBOXYLIC-ACIDS; SEMICONDUCTOR-FILMS; DIAZO DYE; TIO2; PHOTOELECTROLYSIS; SPECTROSCOPY;
D O I
10.1002/cphc.200600379
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanostructured tungsten trioxide thin-film electrodes are prepared on conducting glass substrates by either potentiostatic electrodepostion from aqueous solutions of peroxotungstic acid or direct deposition of WO3 slurries. Once treated thermally in air at 450 degrees C, the electrodes are found to be composed of monoclinic WO3 grains with a particle size around 30-40 nm. The photoelectrochemical behaviour of these electrodes in 1 M HClO4 apparently reveals a low degree of electron-hole recombination. Upon addition of formic acid, the electrode showed the current multiplication phenomenon together with a shift of the photocurrent onset potential toward less positive values. Photoelectrochemical experiments devised on the basis of a kinetic model reported recently [I. Mora-Sero, T. Lana-Villarrel, J. Bisquert, A. Pitarch, R. Gomez, P. Salvador, J. Phys. Chem. B 2005, 109, 3371] showed that an interfacial mechanism of inelastic, direct hole tranfer takes place in the photooxidation of formic acid. This behaviour is attributed to the tendency of formic acid molecules to be specifically adsorbed on the WO3 nanoparticles as evidenced by attenuated total reflection infrared spectroscopy.
引用
收藏
页码:2540 / 2551
页数:12
相关论文
共 71 条
[31]   PHOTOELECTROCATALYTIC DEGRADATION OF FORMIC-ACID USING A POROUS TIO2 THIN-FILM ELECTRODE [J].
KIM, DH ;
ANDERSON, MA .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1994, 28 (03) :479-483
[32]   EFFECTS OF ILLUMINATION INTENSITY AND SOLUTION PH ON THE COMPETITIVE OXIDATION OF HALIDE-IONS AND WATER AT AN ILLUMINATED TIO2 ELECTRODE [J].
KOBAYASHI, T ;
YONEYAMA, H ;
TAMURA, H .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1981, 122 (MAY) :133-145
[33]   Attempt to determine pristine points of zero charge of Nb2O5, Ta2O5, and HfO2 [J].
Kosmulski, M .
LANGMUIR, 1997, 13 (23) :6315-6320
[34]  
Lana T., 2004, J PHYS CHEM B, V108, P20278
[35]   A spectroscopic and electrochemical approach to the study of the interactions and photoinduced electron transfer between catechol and anatase nanoparticles in aqueous solution [J].
Lana-Villarreal, T ;
Rodes, A ;
Pérez, JM ;
Gómez, R .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (36) :12601-12611
[36]   Adsorption studies on titanium dioxide by means of Raman spectroscopy [J].
Lana-Villarreal, Teresa ;
Perez, Juan M. ;
Gomez, Roberto .
COMPTES RENDUS CHIMIE, 2006, 9 (5-6) :806-816
[37]   PHOTOREACTIVITY OF WO3 DISPERSIONS - SPIN TRAPPING AND ELECTRON-SPIN-RESONANCE DETECTION OF RADICAL INTERMEDIATES [J].
LEAUSTIC, A ;
BABONNEAU, F ;
LIVAGE, J .
JOURNAL OF PHYSICAL CHEMISTRY, 1986, 90 (17) :4193-4198
[38]  
LELAND JK, 1987, J PHYS CHEM-US, V91, P5038
[39]  
LINQUIST SE, 2001, ELECTROCHEMISTRY NAN, P169
[40]  
Luo J, 2002, J NEW MAT ELECTR SYS, V5, P315