The intrinsic damping of the fractional oscillator

被引:81
作者
Tofighi, A [1 ]
机构
[1] Univ Mazandaran, Dept Phys, Fac Basic Sci, Babol Sar, Iran
关键词
fractional oscillation; intrinsic damping;
D O I
10.1016/S0378-4371(03)00598-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain analytical expressions for the time rate of change of the potential energy, the kinetic energy and the total energy of a fractional oscillator in terms of the products of Mittag-Leffler functions. We propose a definition for the intrinsic damping force of this oscillator. We obtain a general expression for this damping force. An expression for this damping force in the asymptotic limit (omegat --> 0) is also obtained. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:29 / 34
页数:6
相关论文
共 9 条
[1]   Dynamics of the fractional oscillator [J].
Achar, BNN ;
Hanneken, JW ;
Enck, T ;
Clarke, T .
PHYSICA A, 2001, 297 (3-4) :361-367
[2]   A new Lagrangian and a new Lagrange equation of motion for fractionally damped systems [J].
Agrawal, OP .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2001, 68 (02) :339-341
[3]  
Caputo M., 1971, Rivista del Nuovo Cimento, V1, P161, DOI 10.1007/BF02820620
[4]  
Gorenflo R., 1977, Fractional Calculus in Continuum Mechanics, P223
[5]   Fractional relaxation-oscillation and fractional diffusion-wave phenomena [J].
Mainardi, F .
CHAOS SOLITONS & FRACTALS, 1996, 7 (09) :1461-1477
[6]   On Mittag-Leffler-type functions in fractional evolution processes [J].
Mainardi, F ;
Gorenflo, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) :283-299
[7]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[8]   Nonconservative Lagrangian and Hamiltonian mechanics [J].
Riewe, F .
PHYSICAL REVIEW E, 1996, 53 (02) :1890-1899
[9]   Mechanics with fractional derivatives [J].
Riewe, F .
PHYSICAL REVIEW E, 1997, 55 (03) :3581-3592