Fast algorithms for numerical, conservative, and entropy approximations of the Fokker-Planck-Landau equation

被引:59
作者
Buet, C
Cordier, S
Degond, P
Lemou, M
机构
[1] UNIV PARIS 06, ANAL NUMER LAB, CNRS, URA 189, F-75252 PARIS 05, FRANCE
[2] UNIV TOULOUSE 3, UFR MIG, MIP, CNRS UMR 5640, F-31062 TOULOUSE, FRANCE
关键词
OPERATOR; SCHEME;
D O I
10.1006/jcph.1997.5669
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present fast numerical algorithms to solve the nonlinear Fokker-Planck-Landau equation in 3D velocity space. The discretization of the collision operator preserves the properties required by the physical nature of the Fokker-Planck-Landau equation, such as the conservation of mass, momentum, and energy, the decay of the entropy, and the fact that the steady states are Maxwellians. At the end of this paper, we give numerical results illustrating the efficiency of these fast algorithms in terms of accuracy and CPU time. (C) 1997 Academic Press.
引用
收藏
页码:310 / 322
页数:13
相关论文
共 20 条
[1]   ON THE CONNECTION BETWEEN A SOLUTION OF THE BOLTZMANN-EQUATION AND A SOLUTION OF THE LANDAU-FOKKER-PLANCK EQUATION [J].
ARSENEV, AA ;
BURYAK, OE .
MATHEMATICS OF THE USSR-SBORNIK, 1991, 69 (02) :465-478
[2]  
ARSENEV AA, 1977, USSR COMP MATH MATH, V17, P241
[3]  
BABOVSKY H, 1989, EUR J MECH B-FLUID, V8, P41
[4]   CONSERVATIVE FINITE-DIFFERENCE SCHEMES FOR THE FOKKER-PLANCK EQUATION NOT VIOLATING THE LAW OF AN INCREASING ENTROPY [J].
BEREZIN, YA ;
KHUDICK, VN ;
PEKKER, MS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 69 (01) :163-174
[5]  
BOBILEV AV, 1981, USSR COMP MATH MATH, V20, P190
[6]  
BUET C, IN PRESS MATH MODELS
[7]  
BUET C, IN PRESS TRANSP THEO
[8]  
BUET R, 1993, RESOLUTION DETERMINI
[9]  
Degond P., 1992, Mathematical Models & Methods in Applied Sciences, V2, P167, DOI 10.1142/S0218202592000119
[10]   AN ENTROPY SCHEME FOR THE FOKKER-PLANCK COLLISION OPERATOR OF PLASMA KINETIC-THEORY [J].
DEGOND, P ;
LUCQUINDESREUX, B .
NUMERISCHE MATHEMATIK, 1994, 68 (02) :239-262