On the stability of semi-discrete shock profiles by means of an Evans function in infinite dimension

被引:5
作者
Benzoni-Gavage, S
机构
[1] CNRS, UMPA, F-69364 Lyon 07, France
[2] Ecole Normale Super Lyon, F-69364 Lyon 07, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1999年 / 329卷 / 05期
关键词
D O I
10.1016/S0764-4442(00)88609-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are concerned with the spectral stability of semi-discrete shock profiles. This problem involves a retarded differential operator with variable coefficients. We construct a reduced Evans function, using the fact that the unstable manifold of the eigenvalue equations is finite dimensional - although the full eigenvalue equations are not. This enables us to derive a necessary condition for stability. (C) 1999 Academie des Sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:377 / 382
页数:6
相关论文
共 8 条
[1]   Semi-discrete shock profiles for hyperbolic systems of conservation laws [J].
Benzoni-Gavage, S .
PHYSICA D, 1998, 115 (1-2) :109-123
[2]  
BENZONIGAVAGE S, UNPUB ALTERNATE EVAN
[3]  
Gardner RA, 1998, COMMUN PUR APPL MATH, V51, P797, DOI 10.1002/(SICI)1097-0312(199807)51:7<797::AID-CPA3>3.0.CO
[4]  
2-1
[5]  
HALE J. K., 2013, Introduction to functional differential equations
[7]  
MALLETPARET J, IN PRESS J DYNAM DIF
[8]  
Schechter M., 1971, Spectra of Partial Differential Operators