A new pivoting strategy for Gaussian elimination

被引:56
作者
Olschowka, M [1 ]
Neumaier, A [1 ]
机构
[1] UNIV VIENNA,INST MATH,A-1090 VIENNA,AUSTRIA
关键词
D O I
10.1016/0024-3795(94)00192-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses a method for determining a good pivoting sequence for Gaussian elimination, based on an algorithm for solving assignment problems. The worst case complexity is O(n(3)); in practice O(n(2.25)) operations are sufficient.
引用
收藏
页码:131 / 151
页数:21
相关论文
共 14 条
[1]  
BOSE RC, 1983, INTRO COMBINATORIAL
[2]  
BURKARD RE, 1980, LECT NOTES EC MATH S
[3]  
CARPANETO G, 1980, ACM T MATH SOFTWARE, P104
[4]  
CONTE SD, 1980, ELEMENTARY NUMERICAL
[5]  
Curtis A. R., 1972, Journal of the Institute of Mathematics and Its Applications, V10, P118
[6]  
DEKKER TJ, 1968, MATH CTR TRACTS, V22, P20
[7]   AN EFFICIENT LABELING TECHNIQUE FOR SOLVING SPARSE ASSIGNMENT PROBLEMS [J].
DERIGS, U ;
METZ, A .
COMPUTING, 1986, 36 (04) :301-311
[8]   MAXIMUM MATCHING AND A POLYHEDRON WITH O'1-VERTICES [J].
EDMONDS, J .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICS AND MATHEMATICAL, 1965, B 69 (1-2) :125-+
[9]   QMR - A QUASI-MINIMAL RESIDUAL METHOD FOR NON-HERMITIAN LINEAR-SYSTEMS [J].
FREUND, RW ;
NACHTIGAL, NM .
NUMERISCHE MATHEMATIK, 1991, 60 (03) :315-339
[10]  
Kuhn HW., 1955, Nav. Res. Logist. Q, V2, P83, DOI [DOI 10.1002/NAV.3800020109, 10.1002/nav.3800020109, DOI 10.1002/NAV.20053]