Cell cycle regulation of dynein association with membranes modulates microtubule-based organelle transport

被引:147
作者
Niclas, J
Allan, VJ
Vale, RD
机构
[1] UNIV CALIF SAN FRANCISCO,DEPT PHARM,SAN FRANCISCO,CA 94143
[2] UNIV CALIF SAN FRANCISCO,DEPT BIOCHEM,SAN FRANCISCO,CA 94143
[3] UNIV CALIF SAN FRANCISCO,HOWARD HUGHES MED INST,SAN FRANCISCO,CA 94143
[4] UNIV MANCHESTER,SCH BIOL SCI,MANCHESTER M13 9PT,LANCS,ENGLAND
关键词
D O I
10.1083/jcb.133.3.585
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cytoplasmic dynein is a minus end-directed microtubule motor that performs distinct functions in interphase and mitosis. In interphase, dynein transports organelles along microtubules, whereas in metaphase this motor has been implicated in mitotic spindle formation and orientation as well as chromosome segregation. The manner in which dynein activity is regulated during the cell cycle, however, has not been resolved. In this study, we have examined the mechanism by which organelle transport is controlled by the cell cycle in extracts of Xenopus laevis eggs. Here, we show that photocleavage of the dynein heavy chain dramatically inhibits minus end-directed organelle transport and that purified dynein restores this motility, indicating that dynein is the predominant minus end-directed membrane motor in Xenopus egg extracts. By measuring the amount of dynein associated with isolated membranes, we find that cytoplasmic dynein and its activator dynactin detach from the membrane surface in metaphase extracts. The sevenfold decrease in membrane-associated dynein correlated well with the eightfold reduction in minus end-directed membrane transport observed in metaphase versus interphase extracts. Although dynein heavy or intermediate chain phosphorylation did not change in a cell cycle-dependent manner, the dynein light intermediate chain incorporated similar to 12-fold more radiolabeled phosphate in metaphase than in interphase extracts. These studies suggest that cell cycle-dependent phosphorylation of cytoplasmic dynein may regulate organelle transport by modulating the association of this motor with membranes.
引用
收藏
页码:585 / 593
页数:9
相关论文
共 58 条
[1]   PROTEIN PHOSPHATASE-1 REGULATES THE CYTOPLASMIC DYNEIN-DRIVEN FORMATION OF ENDOPLASMIC-RETICULUM NETWORKS IN-VITRO [J].
ALLAN, V .
JOURNAL OF CELL BIOLOGY, 1995, 128 (05) :879-891
[2]   CELL-CYCLE CONTROL OF MICROTUBULE-BASED MEMBRANE-TRANSPORT AND TUBULE FORMATION INVITRO [J].
ALLAN, VJ ;
VALE, RD .
JOURNAL OF CELL BIOLOGY, 1991, 113 (02) :347-359
[3]   A NOVEL BRAIN ATPASE WITH PROPERTIES EXPECTED FOR THE FAST AXONAL-TRANSPORT MOTOR [J].
BRADY, ST .
NATURE, 1985, 317 (6032) :73-75
[4]   DIFFERENTIAL PHOSPHORYLATION IN-VIVO OF CYTOPLASMIC DYNEIN ASSOCIATED WITH ANTEROGRADELY MOVING ORGANELLES [J].
DILLMAN, JF ;
PFISTER, KK .
JOURNAL OF CELL BIOLOGY, 1994, 127 (06) :1671-1681
[5]   Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis [J].
Echeverri, CJ ;
Paschal, BM ;
Vaughan, KT ;
Vallee, RB .
JOURNAL OF CELL BIOLOGY, 1996, 132 (04) :617-633
[6]   CYTOPLASMIC DYNEIN IS REQUIRED FOR NORMAL NUCLEAR SEGREGATION IN YEAST [J].
ESHEL, D ;
URRESTARAZU, LA ;
VISSERS, S ;
JAUNIAUX, JC ;
VANVLIETREEDIJK, JC ;
PLANTA, RJ ;
GIBBONS, IR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (23) :11172-11176
[7]  
GIBBONS IR, 1987, J BIOL CHEM, V262, P2780
[8]   CHARACTERIZATION OF DLC-A AND DLC-B, 2 FAMILIES OF CYTOPLASMIC DYNEIN LIGHT-CHAIN SUBUNITS [J].
GILL, SR ;
CLEVELAND, DW ;
SCHROER, TA .
MOLECULAR BIOLOGY OF THE CELL, 1994, 5 (06) :645-654
[9]   DYNACTIN, A CONSERVED, UBIQUITOUSLY EXPRESSED COMPONENT OF AN ACTIVATOR OF VESICLE MOTILITY MEDIATED BY CYTOPLASMIC DYNEIN [J].
GILL, SR ;
SCHROER, TA ;
SZILAK, I ;
STEUER, ER ;
SHEETZ, MP ;
CLEVELAND, DW .
JOURNAL OF CELL BIOLOGY, 1991, 115 (06) :1639-1650
[10]  
HAMMALVAREZ SF, 1993, J CELL SCI, V106, P955