Visual object tracking with adaptive structural convolutional network

被引:57
作者
Yuan, Di [1 ]
Li, Xin [1 ]
He, Zhenyu [1 ,2 ]
Liu, Qiao [1 ]
Lu, Shuwei [1 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Visual tracking; Convolution neural network; Structural filters; Adaptive weighting; REGION;
D O I
10.1016/j.knosys.2020.105554
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional Neural Networks (CNN) have been demonstrated to achieve state-of-the-art performance in visual object tracking task. However, existing CNN-based trackers usually use holistic target samples to train their networks. Once the target undergoes complicated situations (e.g., occlusion, background clutter, and deformation), the tracking performance degrades badly. In this paper, we propose an adaptive structural convolutional filter model to enhance the robustness of deep regression trackers (named: ASCT). Specifically, we first design a mask set to generate local filters to capture local structures of the target. Meanwhile, we adopt an adaptive weighting fusion strategy for these local filters to adapt to the changes in the target appearance, which can enhance the robustness of the tracker effectively. Besides, we develop an end-to-end trainable network comprising feature extraction, decision making, and model updating modules for effective training. Extensive experimental results on large benchmark datasets demonstrate the effectiveness of the proposed ASCT tracker performs favorably against the state-of-the-art trackers. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 74 条
[1]   Deformable part-based tracking by coupled global and local correlation filters [J].
Akin, Osman ;
Erdem, Erkut ;
Erdem, Aykut ;
Mikolajczyk, Krystian .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 38 :763-774
[2]  
[Anonymous], 2016, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2016.465
[3]   Staple: Complementary Learners for Real-Time Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Golodetz, Stuart ;
Miksik, Ondrej ;
Torr, Philip H. S. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1401-1409
[4]   Fully-Convolutional Siamese Networks for Object Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Henriques, Joao F. ;
Vedaldi, Andrea ;
Torr, Philip H. S. .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 :850-865
[5]  
Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
[6]   Convolutional Regression for Visual Tracking [J].
Chen, Kai ;
Tao, Wenbing .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (07) :3611-3620
[7]   Context-aware Deep Feature Compression for High-speed Visual Tracking [J].
Choi, Jongwon ;
Chang, Hyung Jin ;
Fischer, Tobias ;
Yun, Sangdoo ;
Lee, Kyuewang ;
Jeong, Jiyeoup ;
Demiris, Yiannis ;
Choi, Jin Young .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :479-488
[8]   Attentional Correlation Filter Network for Adaptive Visual Tracking [J].
Choi, Jongwon ;
Chang, Hyung Jin ;
Yun, Sangdoo ;
Fischer, Tobias ;
Demiris, Yiannis ;
Choi, Jin Young .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :4828-4837
[9]   ECO: Efficient Convolution Operators for Tracking [J].
Danelljan, Martin ;
Bhat, Goutam ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6931-6939
[10]   Discriminative Scale Space Tracking [J].
Danelljan, Martin ;
Hager, Gustav ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (08) :1561-1575